Hans Peter HerzigDr. Hans Peter Herzig is Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Past President of the European Optical Society (EOS). His current research interests include refractive and diffractive micro-optics, nano-scale optics and optical MEMS.
Hans Peter Herzig received his diploma in physics from the Swiss Federal Institute of Technology in Zürich, Switzerland, in 1978. From 1978 to 1982 he was a scientist with the Optics Development Department of Kern in Aarau, Switzerland, working in lens design and optical testing. In 1983, he became a graduate research assistant with the Applied Optics Group at the Institute of Microtechnology of the University of Neuchâtel, Switzerland, working in the field of holographic optical elements. In 1987, he received his PhD degree in optics. From 1989 to 2001 he was head of the micro-optics research group in Neuchâtel. From 2002 to 2008 he was a full professor and head of the Applied Optics Laboratory at the University of Neuchâtel. Professor Herzig joined the faculty at EPFL in January 2009.
He is member of OSA, IEEE Photonics Society and Fellow of EOS. 2009-2010 he was President of the European Optical Society (EOS), 2001-2009 Vice-President of the Swiss Society of Optics and Microscopy and 2012-2014 Vice-President of ICO. Dr. Herzig is in the editorial board of different scientific journals (JM3, Optical Review, JEOS). He served as Conference Chairman for international conferences of EOS, IEE, IEEE/LEOS, OSA and SPIE; and as Guest Editor of three special issues of IEEE, OSA journals. He is editor of a well-known book on micro-optics (published in English and Chinese), author of 14 book chapters, over 150 peer reviewed articles and 300 conference proceedings.
Elyahou KaponEli Kapon received his Ph.D. in physics from Tel Aviv University, Israel in 1982. He then spent two years at the California Institute of Technology, Pasadena, as a Chaim Weizmann Research Fellow, where he worked mainly on phase-locked arrays of semiconductor lasers. From 1984 till 1993 he was with Bellcore, New Jersey, first as member of technical staff, and from 1989 as District Manager. At Bellcore, he worked on integrated optics in III-V compounds and on low-dimensional semiconductor nanostructures, particularly quantum wires and quantum dots. He managed the Quantum Structures District and the Integrated Optoelectronics District at Bellcore from 1989 till 1992 and from 1992 till 1993, respectively. In 1993 he was appointed Professor of Physics of Nanostructures at the Physics Department of the Swiss Federal Institute of Technology in Lausanne (EPFL), where he heads the Laboratory of Physics of Nanostructures. In 1999-2000 he spent his sabbatical as Sackler Scholar at the Mortimer and Raymond Sackler Institute of Advanced Studies in Tel Aviv University, Israel. During that period he helped establishing the Tel Aviv University Center for Nanoscience and Nanotechnology and served as its first Director from 2000 to 2002. In 2001 he founded the start up BeamExpress and has been serving as its Chief Scientist. He is currently serving as Director of the Institute of Quantum Electronics and Photonics in the Faculty of Basic Sciences at EPFL. His research interests include self-organization of nanostructures, optical properties and electron transport in low-dimensional quantum structures, quantum wire and quantum dot lasers, photonic crystals and vertical cavity surface emitting lasers. He is author or co-author of >300 journal articles, >10 patents, and editor of two books on semiconductor lasers.
Prof. Kapon is Fellow of the Optical Society of America, the Institute of Electrical and Electronics Engineers, and the American Physical Society of America, and a recipient of a 2007 Humboldt Research Award.
Christian DepeursingeChristian Depeursinge is the leader of the Microvision and Micro-Diagnostics (MVD) group at the Advanced Photonics Laboratory of the Institute of Microengineering at EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland (http://apl.epfl.ch/muvision). His research and expertise in biomedical engineering and optics is internationally acknowledged. His current research topics include coherent and incoherent Imaging applied to diagnostics in biology, His research group pioneered in the development of DHM technology. He worked on several projects developed in cooperation with European and international partners. He is author and co-author of over 100 papers published in peer reviewed journals, several book chapters and more than 30 patents. He has given more than 20 invited lectures and plenaries in the last five years. He developed many projects in cooperation with national and international industries. He is co-founder of a start-up company (Lyncée Tec SA: www.Lynceetec.com). He is currently teaching at EPFL and occasionally in foreign universities and institutes. Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). René SalathéRené Paul Salathé is Professor em. at EPFL since 2009. He is currently a technology consultant for several companies and he serves as an expert member of the Life Science team at the Swiss Innovation Agency (KTI/CTI) in Bern, on the scientific advisory board of the Fraunhofer-Institut für Lasertechnik ILT in Aachen, and he participates on expert panels for the Deutsche Forschungsgemeinschaft. He is a member of the Swiss Society for Optics and Microscopy, the European Optical Society, the Optical Society of America, a senior member of the IEEE, and a life time member of the Swiss Physical Society.
René Paul Salathé received the MS, PhD, and Habilitation (Privatdozent) degrees at the University of Bern in 1970, 1974, and 1979, respectively. Prior to his appointment at EPFL in 1989, he was directing the division "Material Testing and Technology" at the research and development center of the Swiss PTT. He has been active in the fields of semiconductor lasers, fibers, integrated optics, laser processing, and biomedical optics. The results of his research activities have been published more than 250 scientific contributions and 37 PhD theses at EPFL. Several start-up companies have been founded based on patents elaborated in his laboratory and/or by his PhD students. His actual research interests are in the areas of laser tweezers in micro-fluidics for biochemical applications and in optical fiber sensor applications.
Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website
Reymond ClavelReymond CLAVEL obtained his degree in mechanical engineering at the Federal Institute of Technology of Lausanne (EPFL), Switzerland, in 1973. After nine years of gathered experience in industrial plants at Hermes Precisa International (research and development), he was appointed professor at the EPFL, where he obtained his PhD degree in parallel robotics in 1991. He was then consecutively entrusted with the following positions: Head of the department, Director of the Section of micro engineering and, in 1993, Director of the Laboratory of robotics systems (LSRO). His present research topics are parallel robotics, high speed and high precision robotics, medical and surgical robotics applications, surgical instrumentation and precision mechanisms.
Reymond Clavels research successes in parallel and industrial robotics received worldwide special mentions.
Awards :
1989: Laureate of the JIRA AWARD (Japan Industrial Robot Association) for the DELTA parallel robot invented in 1985.
1996: Project winner of the Technologiestandort Schweiz competition and ABB Sonderpreis for the best robotics project.
1998: His laboratory is awarded the Grand Prix de lInnovation in Monaco for new robot technologies.
1999: Laureate of the Golden Robot Award for the DELTA Robot.
2003: Each of his three different submitted projects received the Swiss Technology Award.
2005: Project winner of the Swiss Technology Award competition with further the Sonderpreis 2005 from the Vontobel Foundation in the field of Inventing the future.
2006: Project winner of the Swiss Technology Award competition with Quantum leap into world of nano-EDM (a new high precision EDM machine based on the Delta kinematics).
2007: Two projects based on the LSROs researches are winner of the Swiss Technology Award competition: Cyberthosis for paraplegia rehabilitation (a collaboration with the company Swortec and the Fondation Suisse pour les Cyberthèses (FSC)) and the Microfactory realized in partnership with the CSEM .
Theo LasserDe nationalité allemande, né en 1952 à Lauchheim (Baden-Württemberg, Allemagne).
Après des études de physique à l'Université Fridericiana de Karlsruhe il y obtient son diplôme de physique en 1978.
En 1979, il rejoint l'Institut de Recherches franco-allemand à Saint-Louis (France) comme collaborateur scientifique. En 1986, il entre à la division de recherche de Carl Zeiss à Oberkochen (Allemagne) où il développe principalement divers systèmes laser principalement pour des applications médicales. Dès 1990, il dirige le laboratoire laser de la division médicale. En 1993, il prend la direction de l'unité "laser d'ophtalmologie". En 1995, il est chargé de restructurer et regrouper les nombreuses activités d'ophtalmologie chez Carl Zeiss et de son transfert à Jena. Durant cette période, il réalise des nouveaux instruments de réfraction, des biomicroscopes et des caméras rétiniennes.
Dès janvier 1998, il dirige la recherche de Carl Zeiss à Jena où il initie de nouveaux projets en microscopie, en métrologie optique, en microtechnique et en recherche médicale. En juillet 1998, il est nommé professeur ordinaire en optique biomédicale à l'Institut d'Optique Appliquée. Au sein du Département de microtechnique, son activité de recherche porte sur la optique biomédicale et en particulier la microscopie. Il participe à l'enseignement de l'optique et de microscopie.
Short CV
1972 Physics University of Karlsruhe (Germany)
1979 l'Institut de Recherches franco-allemand à Saint-Louis (France)
1986 central research division Carl Zeiss, Oberkochen (Germany)
1990 Med - Division, ophthalmic lasers
1994 Ophthalmology division, Carl Zeiss Jena
1998 Head of Central research Carl Zeiss Jena
1998 full Professor Ecole Polytechnique Federale Lausanne, Switzerland