The environmental isotopes are a subset of isotopes, both stable and radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the ocean-atmosphere system, within terrestrial biomes, within the Earth's surface, and between these broad domains.
Chemical elements are defined by their number of protons, but the mass of the atom is determined by the number of protons and neutrons in the nucleus. Isotopes are atoms that are of a specific element, but have different numbers of neutrons and thus different mass numbers. The ratio between isotopes of an element varies slightly in the world, so in order to study isotopic ratio changes across the world, changes in isotope ratios are defined as deviations from a standard, multiplied by 1000. This unit is a "per mil". As a convention, the ratio is of the heavier isotope to the lower isotope.
‰
These variations in isotopes can occur through many types of fractionation. They are generally classified as mass independent fractionation and mass dependent fractionation. An example of a mass independent process is the fractionation of oxygen atoms in ozone. This is due to the kinetic isotope effect (KIE) and is caused by different isotope molecules reacting at different speeds. An example of a mass dependent process is the fractionation of water as it transitions from the liquid to gas phase. Water molecules with heavier isotopes (18O and 2H) tend to stay in the liquid phase as water molecules with lighter isotopes (16O and 1H) preferentially move to the gas phase.
Of the different isotopes that exist, one common classification is distinguishing radioactive isotopes from stable isotopes. Radioactive isotopes are isotopes that will decay into a different isotope. For example, 3H (tritium) is a radioactive isotope of hydrogen. It decays into 3He with a half-life of ~12.3 years. By comparison, stable isotopes do not undergo radioactive decay, and their fixed proportions are measured against exponentially decaying proportions of radioactive isotopes to determine the age of a substance.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundance of such stable isotopes can be measured experimentally (isotope analysis), yielding an isotope ratio that can be used as a research tool. Theoretically, such stable isotopes could include the radiogenic daughter products of radioactive decay, used in radiometric dating.
Explore les spectres moléculaires, les modes vibrationnels, les solutions d'équations de Schrödinger et la distribution isotopique en spectrométrie de masse.
Couvre les transports hydrologiques, la pollution de l'eau, la directive-cadre européenne sur l'eau, les temps de transit de l'eau, les isotopes stables et l'équilibre par âge dans les systèmes hydrologiques.
Explore les bases de la radiothérapie, y compris les principes biologiques, les types, les techniques et les méthodes classiques utilisées pour lutter contre le cancer.
The stable water isotopic composition in firn and ice cores provides valuable information on past climatic conditions. Because of uneven accumulation and post-depositional modifications on local spatial scales up to hundreds of meters, time series derived ...
The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the ...
COPERNICUS GESELLSCHAFT MBH2023
, , , ,
The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...