Résumé
In optics, Lambert's cosine law says that the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I0 cos θ. The law is also known as the cosine emission law or Lambert's emission law. It is named after Johann Heinrich Lambert, from his Photometria, published in 1760. A surface which obeys Lambert's law is said to be Lambertian, and exhibits Lambertian reflectance. Such a surface has the same radiance/luminance when viewed from any angle. This means, for example, that to the human eye it has the same apparent brightness. It has the same radiance because, although the emitted power from a given area element is reduced by the cosine of the emission angle, the solid angle, subtended by surface visible to the viewer, is reduced by the very same amount. Because the ratio between power and solid angle is constant, radiance (power per unit solid angle per unit projected source area) stays the same. When an area element is radiating as a result of being illuminated by an external source, the irradiance (energy or photons /time/area) landing on that area element will be proportional to the cosine of the angle between the illuminating source and the normal. A Lambertian scatterer will then scatter this light according to the same cosine law as a Lambertian emitter. This means that although the radiance of the surface depends on the angle from the normal to the illuminating source, it will not depend on the angle from the normal to the observer. For example, if the moon were a Lambertian scatterer, one would expect to see its scattered brightness appreciably diminish towards the terminator due to the increased angle at which sunlight hit the surface. The fact that it does not diminish illustrates that the moon is not a Lambertian scatterer, and in fact tends to scatter more light into the oblique angles than a Lambertian scatterer.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.