Résumé
Le chemin optique est un outil de l'optique géométrique et ondulatoire. Dans un milieu homogène, le chemin optique entre deux points A et B est défini comme la distance AB parcourue par un rayon lumineux multipliée par l’indice de réfraction que le rayon a rencontré lors de son trajet. Cette grandeur a la dimension d'une distance, et plus précisément c'est la distance qu'aurait parcourue la lumière dans le vide pendant la durée qu'elle met à effectuer le trajet dans le milieu donné. En effet : où est le chemin optique entre les points A et B ; n est l'indice de réfraction du milieu homogène ; c est la vitesse de la lumière dans le vide ; v est la vitesse de la lumière dans le milieu joignant les points A et B ; t est le temps du trajet de la lumière entre A et B à la vitesse v. Le principe de Fermat énonce que les trajets empruntés par la lumière pour aller d'un point à un autre ont un chemin optique «stationnaire» au sens du calcul des variations. Le plus souvent, ceci correspond au fait que la lumière va d'un point à un autre par le trajet le plus rapide. Les exceptions correspondent par exemple au chemin de la lumière d'un point à un autre via une réflexion sur un miroir concave. Dans les milieux autres que le vide, les propriétés diélectriques des matériaux introduisent une modification de la vitesse apparente de la lumière. L'indice optique n caractérise cette variation apparente par rapport à sa vitesse dans le vide : Dans le cas d'un milieu homogène, pour lequel n est le même en tout point, le chemin optique pour aller d'un point A vers un point B en ligne droite, noté , est simplement donné par la distance géométrique entre le point A et le point B multipliée par l'indice de réfraction n. On a ainsi : Exemple — Un rayon lumineux parcourt dans une couche d'eau. Parallèlement, un autre rayon lumineux (identique au précédent) traverse d'air. L'eau a pour indice de réfraction n = 1,33 et l'air un indice sensiblement égal à celui du vide n = 1. Dans l'eau, le chemin optique du rayon lumineux vaudra L = 1,33 × 5 = .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.