The hartley (symbol Hart), also called a ban, or a dit (short for decimal digit), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming a priori equiprobability of each possible value. It is named after Ralph Hartley.
If base 2 logarithms and powers of 2 are used instead, then the unit of information is the shannon or bit, which is the information content of an event if the probability of that event occurring is . Natural logarithms and powers of e define the nat.
One ban corresponds to ln(10) nat = log2(10) Sh, or approximately 2.303 nat, or 3.322 bit (3.322 Sh). A deciban is one tenth of a ban (or about 0.332 Sh); the name is formed from ban by the SI prefix deci-.
Though there is no associated SI unit, information entropy is part of the International System of Quantities, defined by International Standard IEC 80000-13 of the International Electrotechnical Commission.
The term hartley is named after Ralph Hartley, who suggested in 1928 to measure information using a logarithmic base equal to the number of distinguishable states in its representation, which would be the base 10 for a decimal digit.
The ban and the deciban were invented by Alan Turing with Irving John "Jack" Good in 1940, to measure the amount of information that could be deduced by the codebreakers at Bletchley Park using the Banburismus procedure, towards determining each day's unknown setting of the German naval Enigma cipher machine. The name was inspired by the enormous sheets of card, printed in the town of Banbury about 30 miles away, that were used in the process.
Good argued that the sequential summation of decibans to build up a measure of the weight of evidence in favour of a hypothesis, is essentially Bayesian inference. Donald A. Gillies, however, argued the ban is, in effect, the same as Karl Popper's measure of the severity of a test.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, le logarithme binaire (log2 n) est le logarithme de base 2. C’est la fonction réciproque de la fonction puissance de deux : x ↦ 2x. Le logarithme binaire de x est la puissance à laquelle le nombre 2 doit être élevé pour obtenir la valeur x, soit : . Ainsi, le logarithme binaire de 1 est 0, le logarithme binaire de 2 est 1, le logarithme binaire de 4 est 2, le logarithme binaire de 8 est 3. On le ld () (pour logarithmus dualis), mais la norme ISO 80000-2 indique que log2(x) devrait être symbolisé par lb (x).
vignette|Unités de mesure de l'information. Un nat (parfois aussi appelé nit ou nepit) est une unité logarithmique de mesure de l'information ou de l'entropie, basée sur le logarithme néperien et les puissances de e plutôt que sur le logarithme en base 2 qui définit le bit. Le nat est l'unité naturelle pour l'entropie en théorie de l'information. Les systèmes d'unités naturelles qui normalisent la constante de Boltzmann à 1 mesurent effectivement une entropie en nats.
Le shannon est une unité de mesure logarithmique de l'information. L'unité est égale à l'information contenue dans un bit dont la valeur est imprévisible et les deux valeurs également probables. 1 Sh ≈ 0,693 nat ≈ 0,301 . La quantité d'information contenue dans un message est ainsi le nombre de bits minimal pour le transmettre ; soit le logarithme en base 2 du nombre de possibilités de messages différents dans le même code. La compression de données consiste à rapprocher le nombre de bits du nombre de shannons.
We prove the bigness of the Chow-Mumford line bundle associated to a Q-Gorenstein family of log Fano varieties of maximal variation with uniformly K-stable general geometric fibers. This result generalizes a theorem of Codogni and Patakfalvi to the logarit ...
In 1948, Claude Shannon laid the foundations of information theory, which grew out of a study to find the ultimate limits of source compression, and of reliable communication. Since then, information theory has proved itself not only as a quest to find the ...
The increasing integration of intermittent renewable generation, especially at the distribution level, necessitates advanced planning and optimisation methodologies contingent on the knowledge of the admittance matrix, capturing the topology and line param ...