En géométrie, le petit dodécahémidodécaèdre est un polyèdre uniforme non-convexe, indexé sous le nom U51.
Ses 30 sommets et ses 60 arêtes, le long desquelles sont situées ses 12 faces pentagonales, sont partagés avec l'icosidodécaèdre.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In geometry, the small icosihemidodecahedron (or small icosahemidodecahedron) is a uniform star polyhedron, indexed as U_49. It has 26 faces (20 triangles and 6 decagons), 60 edges, and 30 vertices. Its vertex figure alternates two regular triangles and decagons as a crossed quadrilateral. It is a hemipolyhedron with its six decagonal faces passing through the model center. It is given a Wythoff symbol, 3 5, but that construction represents a double covering of this model.
En géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
Un polyèdre dont les faces sont des polygones réguliers, qui est transitif sur ses sommets, et qui est transitif sur ses arêtes, est dit quasi régulier. Un polyèdre quasi régulier peut avoir des faces de deux sortes seulement, et celles-ci doivent alterner autour de chaque sommet. Pour certains polyèdres quasi réguliers : on utilise un symbole de Schläfli vertical pour représenter le polyèdre quasi régulier combinant les faces du polyèdre régulier {p,q} et celles du dual régulier {q,p} : leur noyau commun.