Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to one of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.
Passive transport follows Fick's first law.
Diffusion
Diffusion is the net movement of material from an area of high concentration to an area with lower concentration. The difference of concentration between the two areas is often termed as the concentration gradient, and diffusion will continue until this gradient has been eliminated. Since diffusion moves materials from an area of higher concentration to an area of lower concentration, it is described as moving solutes "down the concentration gradient" (compared with active transport, which often moves material from area of low concentration to area of higher concentration, and therefore referred to as moving the material "against the concentration gradient").
However, in many cases (e.g. passive drug transport) the driving force of passive transport can not be simplified to the concentration gradient. If there are different solutions at the two sides of the membrane with different equilibrium solubility of the drug, the difference in the degree of saturation is the driving force of passive membrane transport. It is also true for supersaturated solutions which are more and more important owing to the spreading of the application of amorphous solid dispersions for drug bioavailability enhancement.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces students to models of active and passive transport in biological systems. This will include the effect of external factors (motor proteins, crowding) and membrane dynamics on tr
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Explore les grands thèmes de la biologie, en mettant l'accent sur les transformations énergétiques au sein des systèmes cellulaires et le rôle crucial de l'adénosine triphosphate (ATP).
La membrane plasmique, également appelée membrane cellulaire, membrane cytoplasmique, voire plasmalemme, est une membrane biologique séparant l'intérieur d'une cellule, appelé cytoplasme, de son environnement extérieur, c'est-à-dire du milieu extracellulaire. Cette membrane joue un rôle biologique fondamental en isolant la cellule de son environnement.
La diffusion facilitée (ou transport facilité) est un mécanisme de diffusion facilitée par des transporteurs membranaires. La diffusion facilitée correspond au passage spontané de molécules ou d'ions à travers une membrane biologique en passant par des molécules de transport. Ce processus ne consomme pas d'énergie et ne relève donc pas du transport actif. Les molécules polaires et les ions étant hydrophiles, ils ne peuvent pas diffuser librement à travers la membrane cellulaire à cause de la nature hydrophobe de la bicouche de phospholipides qui la constitue.
Toute cellule biologique est entourée d'une membrane dite membrane plasmique. Cette membrane est relativement imperméable aux espèces électriquement chargées telles que les ions et aux molécules qui peuvent participer à l'activité électrochimique (molécules polaires) telles que l'eau. Elle présente ainsi une grande résistance électrique et forme en quelque sorte un dipôle (comme un condensateur). Grâce à ces propriétés, la membrane sépare en deux compartiments étanches l'intérieur de la cellule, le cytoplasme, de l'extérieur de la cellule, le milieu extracellulaire.
Microcapsules are appealing containers for delivering active ingredients, such as drugs and cosmetics, or conducting chemical and biological reactions on a small scale. To control the timing and location of release of these encapsulants, the shells of micr ...
The past decades have seen the advent of information theory in various fields, from quantum physics to cosmology.At an intermediary scale between atomic and cosmological scales are biological systems and in particular the cell, as a constitutive element of ...
Microcapsules possessing a selective permeability are well-suited vessels for conducting cell studies or chemical reactions that require selective exchanges of reagents over a prolonged time. Most currently reported microcapsules are single-use delivery ca ...