Concept

Groupoid object

In , a branch of mathematics, a groupoid object is both a generalization of a groupoid which is built on richer structures than sets, and a generalization of a group objects when the multiplication is only partially defined. A groupoid object in a C admitting finite s consists of a pair of together with five morphisms satisfying the following groupoid axioms where the are the two projections, (associativity) (unit) (inverse) , , . A group object is a special case of a groupoid object, where and . One recovers therefore topological groups by taking the , or Lie groups by taking the , etc. A groupoid object in the is precisely a groupoid in the usual sense: a category in which every morphism is an isomorphism. Indeed, given such a category C, take U to be the set of all objects in C, R the set of all arrows in C, the five morphisms given by , , and . When the term "groupoid" can naturally refer to a groupoid object in some particular category in mind, the term groupoid set is used to refer to a groupoid object in the category of sets. However, unlike in the previous example with Lie groups, a groupoid object in the category of manifolds is not necessarily a Lie groupoid, since the maps s and t fail to satisfy further requirements (they are not necessarily submersions). A groupoid S-scheme is a groupoid object in the category of schemes over some fixed base scheme S. If , then a groupoid scheme (where are necessarily the structure map) is the same as a group scheme. A groupoid scheme is also called an algebraic groupoid, to convey the idea it is a generalization of algebraic groups and their actions. For example, suppose an algebraic group G acts from the right on a scheme U. Then take , s the projection, t the given action. This determines a groupoid scheme. Given a groupoid object (R, U), the equalizer of , if any, is a group object called the inertia group of the groupoid. The coequalizer of the same diagram, if any, is the quotient of the groupoid. Each groupoid object in a category C (if any) may be thought of as a contravariant functor from C to the category of groupoids.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.