Résumé
En géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) . La variété source étant le produit fibré de par lui-même ; d'un morphisme inverse ; d'un élément neutre appartenant à (un point rationnel de ) vérifiant formellement les axiomes d'un groupe. Si est réduit et si K est algébriquement clos, il suffit que ces morphismes induisent une structure de groupe sur l'ensemble des points rationnels de . Pour toute variété algébrique X sur K, l'ensemble G(X) des K-morphismes de X dans G hérite d'une structure de groupe. Une façon rapide de définir un groupe algébrique est alors de dire que c'est une variété algébrique qui représente un foncteur de la catégorie des variétés algébriques sur K dans la catégorie des groupes. Attention : est muni de la topologie de Zariski et non de la topologie produit. Un homomorphisme de groupes algébriques sur K est un morphisme de variétés algébriques sur K qui est compatible avec la structure de groupe : si sont les lois de multiplication sur G et H respectivement, alors . En termes des points, cela revient à dire que pour toute K-algèbre de type fini A, l'application induite par f est un homomorphisme de groupes. Si K est algébriquement clos et si G, H sont réduits, il suffit de prendre A=K. Un isomorphisme de groupes algébriques est un homomorphisme de groupes algébriques qui est un isomorphisme pour les variétés algébriques sous-jacentes. Un sous-groupe algébrique F de G est une sous-variété de G telle que l'immersion soit un homomorphisme de groupes algébriques. On sait que F est alors une sous-variété fermée. Si est un homomorphisme de groupes algébriques sur K, le noyau Ker de f est défini par .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.