Tumour heterogeneity describes the observation that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity). A minimal level of intra-tumour heterogeneity is a simple consequence of the imperfection of DNA replication: whenever a cell (normal or cancerous) divides, a few mutations are acquired—leading to a diverse population of cancer cells. The heterogeneity of cancer cells introduces significant challenges in designing effective treatment strategies. However, research into understanding and characterizing heterogeneity can allow for a better understanding of the causes and progression of disease. In turn, this has the potential to guide the creation of more refined treatment strategies that incorporate knowledge of heterogeneity to yield higher efficacy. Tumour heterogeneity has been observed in leukemias, breast, prostate, colon, brain, esophagus, head and neck, bladder and gynecological carcinomas, liposarcoma, and multiple myeloma. There are two models used to explain the heterogeneity of tumour cells. These are the cancer stem cell model and the clonal evolution model. The models are not mutually exclusive, and it is believed that they both contribute to heterogeneity in varying amounts across different tumour types. Cancer stem cell The cancer stem cell model asserts that within a population of tumour cells, there is only a small subset of cells that are tumourigenic (able to form tumours). These cells are termed cancer stem cells (CSCs), and are marked by the ability to both self-renew and differentiate into non-tumourigenic progeny. The CSC model posits that the heterogeneity observed between tumour cells is the result of differences in the stem cells from which they originated.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
BIO-680: Practical - De Palma Lab
Cell heterogeneity in the tumor microenvironment.
BIOENG-399: Immunoengineering
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Afficher plus
Concepts associés (16)
Glioblastome multiforme
vignette | cérébrale avec injection de produit de contraste : Coupe frontale, glioblastome multiforme chez un enfant de 15 ans. vignette | cérébrale avec injection de produit de contraste, coupe sagittale, glioblastome multiforme chez un enfant de 15 ans. vignette | Aspect d'un glioblastome sur une lame d'histologie. Le (GBM) ou , également connu sous le nom d'« astrocytome de », est la tumeur primitive du cerveau la plus fréquente et la plus agressive. Le traitement peut comprendre de la chimiothérapie, de la radiothérapie et de la chirurgie.
Somatic evolution in cancer
Somatic evolution is the accumulation of mutations and epimutations in somatic cells (the cells of a body, as opposed to germ plasm and stem cells) during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells. This evolutionary process has first been shown by the studies of Bert Vogelstein in colon cancer. Somatic evolution is important in the process of aging as well as the development of some diseases, including cancer. Cells in pre-malignant and malignant neoplasms (tumors) evolve by natural selection.
Genome instability
Genome instability (also genetic instability or genomic instability) refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or aneuploidy. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some neurodegenerative diseases such as amyotrophic lateral sclerosis or the neuromuscular disease myotonic dystrophy.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.