Somatic evolution is the accumulation of mutations and epimutations in somatic cells (the cells of a body, as opposed to germ plasm and stem cells) during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells. This evolutionary process has first been shown by the studies of Bert Vogelstein in colon cancer. Somatic evolution is important in the process of aging as well as the development of some diseases, including cancer. Cells in pre-malignant and malignant neoplasms (tumors) evolve by natural selection. This accounts for how cancer develops from normal tissue and why it has been difficult to cure. There are three necessary and sufficient conditions for natural selection, all of which are met in a neoplasm: There must be variation in the population. Neoplasms are mosaics of different mutant cells with both genetic and epigenetic changes that distinguish them from normal cells. The variable traits must be heritable. When a cancer cell divides, both daughter cells inherit the genetic and epigenetic abnormalities of the parent cell, and may also acquire new genetic and epigenetic abnormalities in the process of cellular reproduction. That variation must affect survival or reproduction (fitness). While many of the genetic and epigenetic abnormalities in neoplasms are probably neutral evolution, many have been shown to increase the proliferation of the mutant cells, or decrease their rate of death (apoptosis). (See Hallmarks below) Cells in neoplasms compete for resources, such as oxygen and glucose, as well as space. Thus, a cell that acquires a mutation that increases its fitness will generate more daughter cells than competitor cells that lack that mutation. In this way, a population of mutant cells, called a clone, can expand in the neoplasm. Clonal expansion is the signature of natural selection in cancer. Cancer therapies act as a form of artificial selection, killing sensitive cancer cells, but leaving behind resistant cells.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
BIO-488: Scientific project design in translational oncology
The theme of the course is the role of inflammation in cancer. It focuses on the regulation and multifaceted functions of tumor-associated inflammatory cells, and how they promote or oppose cancer.
BIO-472: Cancer biology II
The course covers in detail the interactions of cancer cells with their environment with an emphasis on tumor-angiogenesis, inflammation, adaptive and innate immunity and cancer-induced immune suppres
Afficher plus
Séances de cours associées (25)
Les caractéristiques du cancer : complexité et capacités
Explore la complexité et les capacités fondamentales du cancer, en se concentrant sur des caractéristiques telles que la signalisation proliférative soutenue et les suppresseurs de croissance.
Réponse aux dommages à l'ADN et gènes suppresseurs de tumeurs
Se penche sur la réponse aux dommages de l'ADN, les gènes suppresseurs de tumeur et le mutant P53 dans le cancer.
Mécanobiologie du cancer
Plonge dans la façon dont les forces mécaniques ont un impact sur la progression du cancer grâce au contrôle de la taille nucléaire, à la rigidité de la matrice et aux métastases.
Afficher plus
Publications associées (163)

Transposable elements mediate genetic effects altering the expression of nearby genes in colorectal cancer

Didier Trono, Evaristo Jose Planet Letschert, Nikolaos Lykoskoufis

Transposable elements (TEs) are prevalent repeats in the human genome, play a significant role in the regulome, and their disruption can contribute to tumorigenesis. However, TE influence on gene expression in cancer remains unclear. Here, we analyze 275 n ...
2024

Next-Generation Modeling of Cancer Using Organoids

Wouter Richard Karthaus, Jillian Rose Love

In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be ...
Cold Spring Harbor Lab Press, Publications Dept2024

Development of cysteine cathepsin inhibitors combined with cell type-specific delivery for the treatment of B-cell lymphoma and solid tumors

Aaron Simone Petruzzella

Cysteine cathepsins proteases are enzymes that play essential physiological roles, but their activity is also associated to different aspects of cancer progression and to the development of other diseases. Therefore, cysteine cathepsins are relevant and pr ...
EPFL2024
Afficher plus
Concepts associés (16)
Tumour heterogeneity
Tumour heterogeneity describes the observation that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity). A minimal level of intra-tumour heterogeneity is a simple consequence of the imperfection of DNA replication: whenever a cell (normal or cancerous) divides, a few mutations are acquired—leading to a diverse population of cancer cells.
Cancérogenèse
La cancérogenèse est l'ensemble de phénomènes transformant une cellule normale en cellule cancéreuse. La formation d'une tumeur maligne met en jeu un ensemble d'événements qui aboutissent à une prolifération incontrôlée des cellules. Les tumeurs apparaissent lorsque environ une demi douzaine de gènes participant au contrôle de la croissance cellulaire ont muté. Cependant, normalement les systèmes de défenses de l'organisme doivent empêcher le cancer de se développer. Paradoxe de Peto Catégorie:Physiopathol
Cellules souches cancéreuses
Les cellules souches cancéreuses (CSCs) sont des cellules cancéreuses (présentes dans les tumeurs dites « solides » ou les cancers hématologiques) qui possèdent des caractéristiques associées aux cellules souches normales, notamment la capacité de donner naissance aux différentes populations de cellules présentes dans une tumeur particulière. Les CSCs sont donc tumorigènes (formant des tumeurs), peut-être à la différence d'autres cellules cancéreuses non tumorigènes.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.