Concept

Stable ∞-category

In , a branch of mathematics, a stable ∞-category is an such that (i) It has a zero object. (ii) Every morphism in it admits a and cofiber. (iii) A triangle in it is a fiber sequence if and only if it is a cofiber sequence. The of a stable ∞-category is . A stable ∞-category admits finite s and colimits. Examples: the of an and the ∞-category of spectra are both stable. A stabilization of an C having finite limits and base point is a functor from the stable ∞-category S to C. It preserves limit. The objects in the image have the structure of infinite loop spaces; whence, the notion is a generalization of the corresponding notion (stabilization (topology)) in classical algebraic topology. By definition, the t-structure of a stable ∞-category is the t-structure of its homotopy category. Let C be a stable ∞-category with a t-structure. Then every filtered object in C gives rise to a spectral sequence , which, under some conditions, converges to By the Dold–Kan correspondence, this generalizes the construction of the spectral sequence associated to a filtered chain complex of abelian groups.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.