DISPLAYTITLE:G1 phase
The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps leading to mitosis. G1 phase ends when the cell moves into the S phase of interphase. Around 30 to 40 percent of cell cycle time is spent in the G1 phase.
G1 phase together with the S phase and G2 phase comprise the long growth period of the cell cycle cell division called interphase that takes place before cell division in mitosis (M phase).
During G1 phase, the cell grows in size and synthesizes mRNA and protein that are required for DNA synthesis. Once the required proteins and growth are complete, the cell enters the next phase of the cell cycle, S phase. The duration of each phase, including the G1 phase, is different in many different types of cells. In human somatic cells, the cell cycle lasts about 10 hours, and the G1 However, in Xenopus embryos, sea urchin embryos, and Drosophila embryos, the G1 phase is barely existent and is defined as the gap, if one exists, between the end of mitosis and the S phase.
G1 phase and the other subphases of the cell cycle may be affected by limiting growth factors such as nutrient supply, temperature, and room for growth. Sufficient nucleotides and amino acids must be present in order to synthesize mRNA and proteins. Physiological temperatures are optimal for cell growth. In humans, the normal physiological temperature is around 37 °C (98.6 °F).
G1 phase is particularly important in the cell cycle because it determines whether a cell commits to division or to leaving the cell cycle. If a cell is signaled to remain undivided, instead of moving onto the S phase, it will leave the G1 phase and move into a state of dormancy called the G0 phase. Most nonproliferating vertebrate cells will enter the G0 phase.
Within the cell cycle, there is a stringent set of regulations known as the cell cycle control system that controls the timing and coordination of the phases to ensure a correct order of events.