In parallel computing, the fork–join model is a way of setting up and executing parallel programs, such that execution branches off in parallel at designated points in the program, to "join" (merge) at a subsequent point and resume sequential execution. Parallel sections may fork recursively until a certain task granularity is reached. Fork–join can be considered a parallel design pattern. It was formulated as early as 1963. By nesting fork–join computations recursively, one obtains a parallel version of the divide and conquer paradigm, expressed by the following generic pseudocode: solve(problem): if problem is small enough: solve problem directly (sequential algorithm) else: for part in subdivide(problem) fork subtask to solve(part) join all subtasks spawned in previous loop return combined results The simple parallel merge sort of CLRS is a fork–join algorithm. mergesort(A, lo, hi): if lo < hi: // at least one element of input mid = ⌊lo + (hi - lo) / 2⌋ fork mergesort(A, lo, mid) // process (potentially) in parallel with main task mergesort(A, mid, hi) // main task handles second recursion join merge(A, lo, mid, hi) The first recursive call is "forked off", meaning that its execution may run in parallel (in a separate thread) with the following part of the function, up to the that causes all threads to synchronize. While the may look like a barrier, it is different because the threads will continue to work after a barrier, while after a only one thread continues. The second recursive call is not a fork in the pseudocode above; this is intentional, as forking tasks may come at an expense. If both recursive calls were set up as subtasks, the main task would not have any additional work to perform before being blocked at the . Implementations of the fork–join model will typically fork tasks, fibers or lightweight threads, not operating-system-level "heavyweight" threads or processes, and use a thread pool to execute these tasks: the fork primitive allows the programmer to specify potential parallelism, which the implementation then maps onto actual parallel execution.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.