Concept

Ensemble de Vitali

In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. There are uncountably many Vitali sets, and their existence depends on the axiom of choice. In 1970, Robert Solovay constructed a model of Zermelo–Fraenkel set theory without the axiom of choice where all sets of real numbers are Lebesgue measurable, assuming the existence of an inaccessible cardinal (see Solovay model). Certain sets have a definite 'length' or 'mass'. For instance, the interval [0, 1] is deemed to have length 1; more generally, an interval [a, b], a ≤ b, is deemed to have length b − a. If we think of such intervals as metal rods with uniform density, they likewise have well-defined masses. The set [0, 1] ∪ [2, 3] is composed of two intervals of length one, so we take its total length to be 2. In terms of mass, we have two rods of mass 1, so the total mass is 2. There is a natural question here: if E is an arbitrary subset of the real line, does it have a 'mass' or 'total length'? As an example, we might ask what is the mass of the set of rational numbers between 0 and 1, given that the mass of the interval [0, 1] is 1. The rationals are dense in the reals, so any value between and including 0 and 1 may appear reasonable. However the closest generalization to mass is sigma additivity, which gives rise to the Lebesgue measure. It assigns a measure of b − a to the interval [a, b], but will assign a measure of 0 to the set of rational numbers because it is countable. Any set which has a well-defined Lebesgue measure is said to be "measurable", but the construction of the Lebesgue measure (for instance using Carathéodory's extension theorem) does not make it obvious whether non-measurable sets exist. The answer to that question involves the axiom of choice. A Vitali set is a subset of the interval of real numbers such that, for each real number , there is exactly one number such that is a rational number.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Séances de cours associées (32)
Théorie des probabilités: Lecture 2
Explore les modèles de jouets, les sigma-algèbres, les variables aléatoires à valeur T, les mesures et l'indépendance dans la théorie des probabilités.
Intégration de Lebesgue : Cantor Set
Explore la construction de la fonction Lebesgue sur l'ensemble Cantor et ses propriétés uniques.
Théorèmes de Minkowski : treillis et volumes
Explore les théorèmes de Minkowski sur les réseaux, les volumes et les comparaisons.
Afficher plus
Publications associées (8)

Mean value theorems for collections of lattices with a prescribed group of symmetries

Nihar Prakash Gargava

Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
EPFL2024

Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface

Jiannong Fang, Marc Parlange, Charles Vivant Ignacio Meneveau, Marco Giovanni Giometto

Single-point measurements from towers in cities cannot properly quantify the impact of all terms in the turbulent kinetic energy (TKE) budget and are often not representative of horizontally-averaged quantities over the entire urban domain. A series of lar ...
Springer2016

Detecting and Tracking Cells using Network Flow Programming

Pascal Fua, Engin Türetken, Xinchao Wang, Carlos Joaquin Becker

We propose a novel approach to automatically detecting and tracking cell populations in time-lapse images. Unlike earlier ones that rely on linking a predetermined and potentially under-complete set of detections, we generate an overcomplete set of competi ...
2015
Afficher plus
Concepts associés (6)
Nombre réel
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Non-measurable set
In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist. The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable.
Mesure (mathématiques)
En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.