Concept

Ensemble de Vitali

Résumé
In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. There are uncountably many Vitali sets, and their existence depends on the axiom of choice. In 1970, Robert Solovay constructed a model of Zermelo–Fraenkel set theory without the axiom of choice where all sets of real numbers are Lebesgue measurable, assuming the existence of an inaccessible cardinal (see Solovay model). Certain sets have a definite 'length' or 'mass'. For instance, the interval [0, 1] is deemed to have length 1; more generally, an interval [a, b], a ≤ b, is deemed to have length b − a. If we think of such intervals as metal rods with uniform density, they likewise have well-defined masses. The set [0, 1] ∪ [2, 3] is composed of two intervals of length one, so we take its total length to be 2. In terms of mass, we have two rods of mass 1, so the total mass is 2. There is a natural question here: if E is an arbitrary subset of the real line, does it have a 'mass' or 'total length'? As an example, we might ask what is the mass of the set of rational numbers between 0 and 1, given that the mass of the interval [0, 1] is 1. The rationals are dense in the reals, so any value between and including 0 and 1 may appear reasonable. However the closest generalization to mass is sigma additivity, which gives rise to the Lebesgue measure. It assigns a measure of b − a to the interval [a, b], but will assign a measure of 0 to the set of rational numbers because it is countable. Any set which has a well-defined Lebesgue measure is said to be "measurable", but the construction of the Lebesgue measure (for instance using Carathéodory's extension theorem) does not make it obvious whether non-measurable sets exist. The answer to that question involves the axiom of choice. A Vitali set is a subset of the interval of real numbers such that, for each real number , there is exactly one number such that is a rational number.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.