Constante gravitationnelleEn physique, la constante gravitationnelle, aussi connue comme la constante universelle de gravitation, notée , est la constante de proportionnalité de la loi universelle de la gravitation d'Isaac Newton. Cette constante physique fondamentale apparaît dans des lois de l'astronomie classique qui en découlent (gravité à la surface d'un corps céleste, troisième loi de Kepler), ainsi que dans la théorie de la relativité générale d'Albert Einstein.
Stationary spacetimeIn general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike. In a stationary spacetime, the metric tensor components, , may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form where is the time coordinate, are the three spatial coordinates and is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field has the components .
Ricci decompositionIn the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry. Let (M,g) be a Riemannian or pseudo-Riemannian n-manifold. Consider its Riemann curvature, as a (0,4)-tensor field.
2-forme de courbureLa 2-forme de courbure est une forme différentielle induite par une forme de connexion sur un fibré principal dans le domaine de la géométrie différentielle. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; la représentation adjointe de sur son algèbre de Lie ; le fibré adjoint de sur ; le produit extérieur sur les -formes différentielles réelles sur ; le crochet de Lie sur l'algèbre de Lie ; le produit wedge-crochet sur les -formes différentielles à valeurs en sur , défini par les combinaisons linéaires de : une 1-forme de connexion sur .
Gravitation (livre)Gravitation est un ouvrage de référence en physique traitant de la relativité générale et de la loi de la gravitation qui en devient une conséquence. Écrit par Charles W. Misner, Kip S. Thorne et John Wheeler, il a été publié pour la première fois en 1973 par la W. H. Freeman and Company. Surnommé MTW, selon les premières lettres du nom de famille des auteurs, ce livre d'environ est régulièrement décrit comme étant la « Bible » de la relativité générale. En 2017, le livre est réédité chez Princeton University Press avec une nouvelle introduction et préface.
Mathématiques de la relativité généraleLes mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d'Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la gravitation sont les champs tensoriels définis sur une variété pseudo-riemannienne représentant l'espace-temps.
Approximation des champs faiblesL'approximation des champs faibles en relativité générale est utilisée pour décrire les champs gravitationnels loin de la source de la gravité. Elle permet de retrouver les lois de la gravitation de Newton. Dans cette approximation, on suppose qu'on peut écrire la métrique de l'espace-temps () sous la forme où est la métrique de Minkowski, est la déviation (faible) par rapport à cette dernière et une constante réelle non nulle.
Théorème de calvitieLe est, en relativité générale, le théorème en vertu duquel tout trou noir astrophysique est entièrement décrit par la métrique de Kerr-Newman, c'est-à-dire par trois et seulement trois paramètres, à savoir : sa masse , sa charge électrique et son moment cinétique , et ce quel que soit son mode de formation et la nature de la matière qui a servi à le former. La conjecture a été proposée, au milieu des années 1960, par les physiciens soviétiques Vitaly L. Ginzburg, Iakov B. Zeldovitch et Igor D. Novikov.
Einstein's static universeEinstein's static universe, aka the Einstein universe or the Einstein static eternal universe, is a relativistic model of the universe proposed by Albert Einstein in 1917. Shortly after completing the general theory of relativity, Einstein applied his new theory of gravity to the universe as a whole. Assuming a universe that was static in time, and possessed of a uniform distribution of matter on the largest scales, Einstein was led to a finite, static universe of spherical spatial curvature.
Gauss's law for gravityIn physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law. The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations.