In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Let G be a Lie group with Lie algebra , and P → B be a principal G-bundle. Let ω be an Ehresmann connection on P (which is a -valued one-form on P). Then the curvature form is the -valued 2-form on P defined by (In another convention, 1/2 does not appear.) Here stands for exterior derivative, is defined in the article "Lie algebra-valued form" and D denotes the exterior covariant derivative. In other terms, where X, Y are tangent vectors to P. There is also another expression for Ω: if X, Y are horizontal vector fields on P, then where hZ means the horizontal component of Z, on the right we identified a vertical vector field and a Lie algebra element generating it (fundamental vector field), and is the inverse of the normalization factor used by convention in the formula for the exterior derivative. A connection is said to be flat if its curvature vanishes: Ω = 0. Equivalently, a connection is flat if the structure group can be reduced to the same underlying group but with the discrete topology. If E → B is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan: where is the wedge product. More precisely, if and denote components of ω and Ω correspondingly, (so each is a usual 1-form and each is a usual 2-form) then For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. using the standard notation for the Riemannian curvature tensor. Contracted Bianchi identities Riemann curvature tensor#Symmetries and identities If is the canonical vector-valued 1-form on the frame bundle, the torsion of the connection form is the vector-valued 2-form defined by the structure equation where as above D denotes the exterior covariant derivative.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.