We study the problem of explainable clustering in the setting first formalized by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). A k-clustering is said to be explainable if it is given by a decision tree where each internal node splits data point ...
2021
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the ϵ-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that fa ...
Let M be a C-2-smooth Riemannian manifold with boundary and N a complete C-2-smooth Riemannian manifold. We show that each stationary p-harmonic mapping u: M -> N, whose image lies in a compact subset of N, is locally C-1,C-alpha for some alpha is an eleme ...
Integrating functions on discrete domains into neural networks is key to developing their capability to reason about discrete objects. But, discrete domains are (I) not naturally amenable to gradient-based optimization, and (II) incompatible with deep lear ...
The statements on the BIBO stability of continuoustime convolution systems found in engineering textbooks are often either too vague (because of lack of hypotheses) or mathematically incorrect. What is more troubling is that they usually exclude the identi ...
We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a generalized random process or as an independently scattered r ...
We present two Lie algebroids linked to the construction of the linearizing output of an input affine nonlinear system. The algorithmic development of the linearizing output proceeds inductively, and each stage has two structures, namely a codimension one ...
Two Lie algebroids are presented that are linked to the construction of the linearizing output of an affine in the input nonlinear system.\ The algorithmic construction of the linearizing output proceeds inductively, and each stage has two structures, name ...
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering ...
Max-stable processes are central models for spatial extremes. In this paper, we focus on some space-time max-stable models introduced in Embrechts et al. (2016). The processes considered induce discrete-time Markov chains taking values in the space of cont ...