Publications associées (41)

Land Cover Mapping From Multiple Complementary Experts Under Heavy Class Imbalance

Devis Tuia, Valérie Zermatten, Javiera Francisca Castillo Navarro, Xiaolong Lu

Deep learning has emerged as a promising avenue for automatic mapping, demonstrating high efficacy in land cover categorization through various semantic segmentation models. Nonetheless, the practical deployment of these models encounters important challen ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Fast and Future: Towards Efficient Forecasting in Video Semantic Segmentation

Evann Pierre Guy Courdier

Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
EPFL2024

Text as a Richer Source of Supervision in Semantic Segmentation Tasks

Devis Tuia, Valérie Zermatten, Javiera Francisca Castillo Navarro, Lloyd Haydn Hughes

This paper introduces TACOSS a text-image alignment approach that allows explainable land cover semantic segmentation by directly integrating semantic concepts encoded from texts. TACOSS combines convolutional neural networks for visual feature extraction ...
The Institute of Electrical and Electronics Engineers, Inc2023

An end-to-end pipeline for historical censuses processing

Lucas Arnaud André Rappo, Rémi Guillaume Petitpierre, Marion Kramer

Censuses are structured documents of great value for social and demographic history, which became widespread from the nineteenth century on. However, the plurality of formats and the natural variability of historical data make their extraction arduous and ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.