Concept

Groupe à opérateurs

La notion de groupe à opérateurs peut être considérée comme une généralisation de la notion mathématique de groupe. Elle permet de donner une forme plus forte à certains théorèmes classiques, comme le théorème de Jordan-Hölder. Un groupe à opérateurs est constitué de trois objets mathématiques : un groupe G, dit groupe sous-jacent (que nous noterons multiplicativement), un ensemble Ω dit domaine d'opérateurs une action de Ω sur G distributive par rapport à la loi de groupe de G, c'est-à-dire d'une application telle que, pour tout élément ω de Ω et tous éléments g, h de G Un groupe à opérateurs ne se réduit pas à son groupe sous-jacent, mais on commet souvent l'abus de langage de les identifier. Un groupe à opérateurs dont le domaine d'opérateurs est Ω est appelé un groupe à opérateurs dans Ω ou encore un Ω-groupe. Cas du groupe ordinaire : Un groupe ordinaire peut être assimilé à un groupe à opérateurs dans l'ensemble vide Ø. Ainsi, on peut considérer que certains théorèmes relatifs aux groupes sont des cas particuliers de théorèmes relatifs aux groupes à opérateurs. Pour tout élément ω de Ω, la transformation g ↦ g est un endomorphisme du groupe sous-jacent G. Un tel endomorphisme est parfois appelé une homothétie du Ω-groupe G. Si G est un groupe et Ω un ensemble, la donnée d'une structure de Ω-groupe sur G équivaut à la donnée d'une famille d'endomorphismes du groupe G indexée par Ω, ou encore à la donnée d'une application de Ω dans l'ensemble des endomorphismes du groupe G. Un groupe à opérateurs est dit commutatif, ou encore abélien, si son groupe sous-jacent est commutatif. Un module M sur un anneau A est un cas particulier de groupe à opérateurs abélien, le groupe abélien étant le groupe additif de M, l'ensemble d'opérateurs étant A et l'action de A sur M étant la loi externe du module. Le fait que M est ainsi un groupe à opérateurs dans A tient à la distributivité de la loi externe du module par rapport à l'addition des vecteurs. Les groupes à opérateurs abéliens ne sont évidemment pas tous des modules, mais on peut ramener leur étude à celle des modules.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.