La 'relation de Planck-Einstein', parfois plus simplement appelée relation de Planck, est une relation de base de la mécanique quantique. Elle traduit le modèle corpusculaire de la lumière (ou plus généralement de toute onde électromagnétique) en permettant de calculer l'énergie transportée par un photon.
Cette relation s'écrit simplement :
où :
est l'énergie du photon (en joules) ;
est la constante de Planck dont une valeur approchée est : ;
la fréquence (en hertz) de l'onde électromagnétique associée au photon considéré.
A la fin du , le modèle ondulatoire de la lumière est solidement ancré dans la physique car celui-ci a permis de prévoir et comprendre certains phénomènes optiques (comme la diffraction ou les interférences), mais ne s'accorde pas avec la théorie du corps noir, ce que les physiciens appellent aussi « la catastrophe ultraviolette ».
En 1900, le physicien allemand Planck émet l'hypothèse de la quantification de l'énergie dans le phénomène du corps noir. En 1905, le physicien suisse Einstein reprend cette hypothèse pour interpréter l'effet photoélectrique, mal expliqué à l'époque, en supposant que la lumière transporte l'énergie par quanta indivisibles.
La notion de photon, particule associée à la lumière, sera introduite plus tard.
C'est pour rendre honneur à leur contribution conjointe que, dans les ouvrages de référence scolaires et universitaires (et plus généralement dans la littérature scientifique), la relation liant l'énergie du photon à sa fréquence est souvent appelée 'relation de Planck-Einstein' (ou plus brièvement relation de Planck pour éviter toute confusion avec les relations de la relativité d'Einstein).
Ces travaux, à l'origine de cette relation, seront par deux fois récompensés par un prix Nobel de physique : en 1918 pour Max Planck et en 1921 pour Albert Einstein.
La relation indique simplement que l'énergie d'un photon est proportionnelle à sa fréquence.
La constante de proportionnalité étant la constante de Planck.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
Quand un photon primaire heurte une particule libre, un photon secondaire est émis dont la longueur d’onde est plus grande que celle du photon primaire, c'est l'effet Compton. La différence de longueur d’onde entre le photon primaire et le photon émis, est proportionnelle à une valeur constante portant le nom de longueur d’onde de Compton, comme l'exprime la relation suivante (voir l'article principal sur la diffusion Compton pour plus d'explications) : où : est le décalage entre les longueurs d'onde du photon incident et du photon diffusé ; est la longueur d'onde de Compton ; est l'angle de diffusion.
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (dəˈbrɔɪ) in 1924, and so matter waves are also known as de Broglie waves.
En physique, le nombre d'onde ou nombre d'ondes (wave number en anglais), ou encore la répétence (repetency), est une grandeur proportionnelle à l'inverse de la longueur d'onde. Deux définitions du nombre d'onde doivent être distinguées. Le nombre d'onde est la norme du vecteur d'onde. Son unité est le radian par mètre. Il est relié à la longueur d'onde par l'équation . Il est l'analogue, dans l'espace, de la fréquence angulaire, ou pulsation, et devrait être qualifié d'angulaire afin de le distinguer du suivant.
Several recent publications show that the electromagnetic radiation generated by transmitting antennas satisfy the following universal conditions: The time domain radiation fields satisfy the condition A ≥ h/4π ⇒ q ≥ e where A is the action of the radiatio ...
At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separ ...
This review is focused on the influence of lattice dynamics on the ionic mobility in superionic conductors in particular solid-state Li-ion conductors. After a succinct review of the static view of ionic conduction, the role of polarizability as the underl ...