Publications associées (97)

Exploiting the Signal-Leak Bias in Diffusion Models

Sabine Süsstrunk, Radhakrishna Achanta, Mahmut Sami Arpa, Martin Nicolas Everaert, Athanasios Fitsios

There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...
2024

Spatial analysis of 10-year predicted risk and incident atherosclerotic cardiovascular disease: the CoLaus cohort

Stéphane Joost, Idris Guessous, David Nicolas De Ridder, Guillaume Jordan

Whether cardiovascular risk scores geographically aggregate and inform on spatial development of atherosclerotic cardiovascular diseases (ASCVD) remains unknown. Our aim is to determine the spatial distribution of 10-year predicted cardiovascular risk and ...
2024

Current propagation type self-consistent leader-return stroke model

Marcos Rubinstein

A current propagation type return stroke model which is consistent with the estimated distribution of the charge on the leader channel is described. The model takes into account the dispersion of the return stroke current along the return stroke channel. T ...
2023

Hierarchical processing underpins competition in tactile perceptual bistability

Andrea Ferrario

Ambiguous sensory information can lead to spontaneous alternations between perceptual states, recently shown to extend to tactile perception. The authors recently proposed a simplified form of tactile rivalry which evokes two competing percepts for a fixed ...
SPRINGER2023

A Statistical Framework to Investigate the Optimality of Signal-Reconstruction Methods

Michaël Unser, Pakshal Narendra Bohra

We present a statistical framework to benchmark the performance of reconstruction algorithms for linear inverse problems, in particular, neural-network-based methods that require large quantities of training data. We generate synthetic signals as realizati ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Daniel Kuhn, Zhi Chen, Wolfram Wiesemann

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affec ...
2022

Functional peaks-over-threshold analysis

Anthony Christopher Davison, Raphaël Gérard Théodore Michel Marie de Deloÿe et Fourcade de Fondeville

Peaks-over-threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, w ...
WILEY2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.