We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...
We prove nontrivial bounds for general bilinear forms in hyper-Kloosterman sums when the sizes of both variables may be below the range controlled by Fourier-analytic methods (Polya-Vinogradov range). We then derive applications to the second moment of cus ...
We revisit a recent bound of I. Shparlinski and T. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier resul ...
The present thesis deals with problems arising from discrete mathematics, whose proofs make use of tools from algebraic geometry and topology. The thesis is based on four papers that I have co-authored, three of which have been published in journals, and o ...
We consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance ...
In a multistage secret sharing (MSSS) scheme, the authorised subsets of participants could recover a number of secrets in different stages. A one-stage multisecret sharing (OSMSS) scheme is a special case of MSSS schemes in which all the secrets are recove ...
We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convol ...
Among anonymity systems, DC-nets have long held attraction for their resistance to traffic analysis attacks, but practical implementations remain vulnerable to internal disruption or “jamming” attacks, which require time-consuming detection procedures to r ...
Let B-M : C x C -> C be a bilinear form B-M(p, q) - p(T)Mq, with an invertible matrix M is an element of C-2x2. We prove that any finite set S contained in an irreducible algebraic curve C of degree d in C determines Omega(d)(vertical bar S vertical bar(4/ ...
Let G be a finite group and let k be a field. Our purpose is to investigate the simple modules for the double Burnside ring kB(G,G). It turns out that they are evaluations at G of simple biset functors. For a fixed finite group H, we introduce a suitable b ...