The circuit topology of a folded linear polymer refers to the arrangement of its intra-molecular contacts. Examples of linear polymers with intra-molecular contacts are nucleic acids and proteins. Proteins fold via formation of contacts of various nature, including hydrogen bonds, disulfide bonds, and beta-beta interactions. RNA molecules fold by forming hydrogen bonds between nucleotides, forming nested or non-nested structures. Contacts in the genome are established via protein bridges including CTCF and cohesins and are measured by technologies including Hi-C. Circuit topology categorises the topological arrangement of these physical contacts, that are referred to as hard contacts (or h-contacts). Furthermore, chains can fold via knotting (or formation of "soft" contacts (s-contacts)). Circuit topology uses a similar language to categorise both "soft" and "hard" contacts, and provides a full description of a folded linear chain. In this framework, a "circuit" refers to a segment of the chain where each contact site within the segment forms connections with other contact sites within the same segment, and thus is not left unpaired. A folded chain can thus be studied based on its constituting circuits.
A simple example of a folded chain is a chain with two hard contacts. For a chain with two binary contacts, three arrangements are available: parallel (P), series (S) and crossed (X). For a chain with n contacts, the topology can be described by an n by n matrix in which each element illustrates the relation between a pair of contacts and may take one of the three states, P, S and X. Multivalent contacts can also be categorised in full or via decomposition into several binary contacts. Similarly, circuit topology allows for classification of the pairwise arrangements of chain crossings and tangles, thus providing a complete 3D description of folded chains. Furthermore, one can apply circuit topology operations to soft and hard contacts to generate complex folds, using a bottom-up engineering approach.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques.
vignette|Structure tridimensionnelle d'un ARN régulateur (riboswitch). vignette|Structure moléculaire de l'ARN. L'acide ribonucléique ou ARN (en anglais, RNA, pour ribonucleic acid) est un acide nucléique présent chez pratiquement tous les êtres vivants, et aussi chez certains virus. L'ARN est très proche chimiquement de l'ADN et il est d'ailleurs en général synthétisé dans les cellules à partir d'un segment d'ADN matrice dont il est une copie.
Explore la conception de circuits protéiques pour les opérations logiques et les conversions analogiques-numériques dans les systèmes vivants, avec des applications thérapeutiques directes.
Explore l'ingénierie des cellules intelligentes par des circuits génétiques et protéiques pour l'ingénierie cellulaire, en discutant des mécanismes de détection et de la transmission des signaux.
Post-translational modifications (PTMs) play a pivotal role in regulating protein structure, interaction, and function. Aberrant PTM patterns are associated with diseases. Moreover, individual PTMs have a complex interaction with each other, known as PTM c ...
Advances in controlled radical polymerization over the past two decades have transformed the ability to produce molecularly well-defined, chain-end tethered polymer brush films. The assets of controlled radical polymerization reactions have impacted the sy ...
Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but too ...