Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Explore les algorithmes d'optimisation composite, y compris les opérateurs proximaux et les méthodes de gradient, avec des exemples et des limites théoriques.
Explore l'impact du bruit de gradient sur les algorithmes d'optimisation, en se concentrant sur les fonctions de risque lisses et non lisses et la dérivation des moments de bruit de gradient.
Explore la programmation dynamique pour un contrôle optimal, couvrant le remplacement de la machine, les chaînes de Markov, les politiques de contrôle et les problèmes quadratiques linéaires.
Explore l'optimisation stochastique de la gestion de portefeuille, en mettant l'accent sur les critères de décision pour des objectifs incertains et le concept de la valeur conditionnelle à risque.
Couvre le rôle des modèles et des données dans lapprentissage statistique et les formulations doptimisation, avec des exemples de problèmes de classification, de régression et destimation de la densité.