Concept

Causal graph

Résumé
In statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process. Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation. As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend. As inference tools, the graphs enable researchers to estimate effect sizes from non-experimental data, derive testable implications of the assumptions encoded, test for external validity, and manage missing data and selection bias. Causal graphs were first used by the geneticist Sewall Wright under the rubric "path diagrams". They were later adopted by social scientists and, to a lesser extent, by economists. These models were initially confined to linear equations with fixed parameters. Modern developments have extended graphical models to non-parametric analysis, and thus achieved a generality and flexibility that has transformed causal analysis in computer science, epidemiology, and social science. The causal graph can be drawn in the following way. Each variable in the model has a corresponding vertex or node and an arrow is drawn from a variable X to a variable Y whenever Y is judged to respond to changes in X when all other variables are being held constant. Variables connected to Y through direct arrows are called parents of Y, or "direct causes of Y," and are denoted by Pa(Y). Causal models often include "error terms" or "omitted factors" which represent all unmeasured factors that influence a variable Y when Pa(Y) are held constant. In most cases, error terms are excluded from the graph. However, if the graph author suspects that the error terms of any two variables are dependent (e.g. the two variables have an unobserved or latent common cause) then a bidirected arc is drawn between them.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.