Résumé
La méthode Condorcet (aussi appelée scrutin de Condorcet ou vote Condorcet) est un système de vote obéissant au principe de Condorcet qui s'énonce ainsi : Le vainqueur, s'il existe, est donc le candidat qui, comparé tour à tour à chacun des autres candidats, s’avère à chaque fois être le candidat préféré. Autrement dit, il bat tous les autres en duel. Un tel candidat est appelé vainqueur de Condorcet. Rien ne garantit la présence d'un candidat satisfaisant à ce critère de victoire : c'est le paradoxe de Condorcet. Ainsi, tout système de vote fondé sur la méthode Condorcet doit prévoir un moyen de résoudre les votes pour lesquels ce candidat idéal n'existe pas. Cette méthode doit son nom à Nicolas de Condorcet, mathématicien et philosophe français du , qui la justifie à partir d'une réflexion mathématique sur les probabilités d'erreur de jugement de la part des électeurs. La méthode est déjà mentionnée par l'écrivain catalan Raymond Lulle au . Dans un contexte politique de type gauche/centre/droite, le théorème de l'électeur médian indique que l'option centriste est le vainqueur de Condorcet quand elle bat les options de gauche (avec l'aide des voix de droite), et les options de droite (avec les voix de gauche). Dans son Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Condorcet met en évidence le fait qu'une élection ordinaire peut très bien ne pas représenter les désirs des électeurs. On peut en prendre conscience dans les deux exemples suivants Exemple dans l'histoire contemporaine Considérons l'élection présidentielle française de 2007. Le vainqueur fut Nicolas Sarkozy avec le scrutin uninominal majoritaire à deux tours en vigueur. Pourtant, des sondages indiquaient qu'une majorité de Français auraient préféré François Bayrou à Nicolas Sarkozy, ce qui peut paraître contradictoire. Ces sondages montraient de plus que François Bayrou était préféré face à chacun de ses adversaires lors de ces élections.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.