Concept

Tillite

Résumé
Till or glacial till is unsorted glacial sediment. Till is derived from the erosion and entrainment of material by the moving ice of a glacier. It is deposited some distance down-ice to form terminal, lateral, medial and ground moraines. Till is classified into primary deposits, laid down directly by glaciers, and secondary deposits, reworked by fluvial transport and other processes. Till is a form of glacial drift, which is rock material transported by a glacier and deposited directly from the ice or from running water emerging from the ice. It is distinguished from other forms of drift in that it is deposited directly by glaciers without being reworked by meltwater. Till is characteristically unsorted and unstratified, and is not usually consolidated. Most till consists predominantly of clay, silt, and sand, but with pebbles, cobbles, and boulders scattered through the till. The abundance of clay demonstrates lack of reworking by turbulent flow, which otherwise would winnow the clay. Typically, the distribution of particle sizes shows two peaks (it is bimodal) with pebbles predominating in the coarser peak. The larger clasts (rock fragments) in till typically show a diverse composition, often including rock types from outcrops hundreds of kilometers away. Some clasts may be rounded, and these are thought to be stream pebbles entrained by the glacier. Many of the clasts are faceted, striated, or polished, all signs of glacial abrasion. The sand and silt grains are typically angular to subangular rather than rounded. It has been known since the careful statistic work by geologist Chauncey D. Holmes in 1941 that elongated clasts in tills tend to align with the direction of ice flow. Clasts in till may also show slight imbrication, with the clasts dipping upstream. Though till is generally unstratified, till high in clay may show lamination due to compaction under the weight of overlying ice. Till may also contain lenses of sand or gravel, indicating minor and local reworking by water transitional to non-till glacial drift.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.