Explore les représentations factorisées pour la planification, en se concentrant sur la réduction de la complexité et l'amélioration de l'efficacité grâce à une modélisation distincte des fonctionnalités.
Explore le problème de satisfabilité booléenne et l'algorithme Davis-Putnam-Logemann-Loveland, ainsi que les résolveurs SAT modernes et les techniques de résolution efficaces.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.