Concept

High Bandwidth Memory

Résumé
High Bandwidth Memory (HBM) is a high-speed computer memory interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) initially from Samsung, AMD and SK Hynix. It is used in conjunction with high-performance graphics accelerators, network devices, high-performance datacenter AI ASICs, as on-package cache in CPUs and on-package RAM in upcoming CPUs, and FPGAs and in some supercomputers (such as the NEC SX-Aurora TSUBASA and Fujitsu A64FX). The first HBM memory chip was produced by SK Hynix in 2013, and the first devices to use HBM were the AMD Fiji GPUs in 2015. High Bandwidth Memory was adopted by JEDEC as an industry standard in October 2013. The second generation, HBM2, was accepted by JEDEC in January 2016. HBM achieves higher bandwidth while using less power in a substantially smaller form factor than DDR4 or GDDR5. This is achieved by stacking up to eight DRAM dies and an optional base die which can include buffer circuitry and test logic. The stack is often connected to the memory controller on a GPU or CPU through a substrate, such as a silicon interposer. Alternatively, the memory die could be stacked directly on the CPU or GPU chip. Within the stack the die are vertically interconnected by through-silicon vias (TSVs) and microbumps. The HBM technology is similar in principle but incompatible with the Hybrid Memory Cube (HMC) interface developed by Micron Technology. HBM memory bus is very wide in comparison to other DRAM memories such as DDR4 or GDDR5. An HBM stack of four DRAM dies (4Hi) has two 128bit channels per die for a total of 8 channels and a width of 1024 bits in total. A graphics card/GPU with four 4Hi HBM stacks would therefore have a memory bus with a width of 4096 bits. In comparison, the bus width of GDDR memories is 32 bits, with 16 channels for a graphics card with a 512bit memory interface. HBM supports up to 4 GB per package. The larger number of connections to the memory, relative to DDR4 or GDDR5, required a new method of connecting the HBM memory to the GPU (or other processor).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.