Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Tribu (mathématiques)En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Suite généraliséeEn mathématiques, la notion de suite généralisée, ou suite de Moore-Smith, ou filet, étend celle de suite, en indexant les éléments d'une famille par des éléments d'un ensemble ordonné filtrant qui n'est plus nécessairement celui des entiers naturels. Pour tout ensemble X, une suite généralisée d'éléments de X est une famille d'éléments de X indexée par un ensemble ordonné filtrant A. Par filtrant (à droite), on entend que toute paire dans A possède un majorant dans A. Soit un filet dans un ensemble E et, pour tout , .
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Ensemble négligeablevignette|Le triangle de Sierpiński est un exemple d'ensemble nul de points dans R 2 \mathbb {R} ^{2}. En théorie de la mesure, dans un espace mesuré, un ensemble négligeable est un ensemble de mesure nulle ou une partie d'un tel ensemble. La définition peut dépendre de la mesure choisie : deux mesures sur un même espace mesurable qui ont les mêmes ensembles de mesure nulle sont dites équivalentes. À un niveau élémentaire, il est possible d'aborder la notion d'ensemble négligeable pour un certain nombre d'espaces (dont la droite réelle) sans avoir à introduire une mesure.