In ideal magnetohydrodynamics, Alfvén's theorem, or the frozen-in flux theorem, states that electrically conducting fluids and embedded magnetic fields are constrained to move together in the limit of large magnetic Reynolds numbers. It is named after Hannes Alfvén, who put the idea forward in 1943.
Alfvén's theorem implies that the magnetic topology of a fluid in the limit of a large magnetic Reynolds number cannot change. This approximation breaks down in current sheets, where magnetic reconnection can occur.
The concept of magnetic fields being frozen into fluids with infinite electrical conductivity was first proposed by Hannes Alfvén in a 1943 paper titled "On the Existence of Electromagnetic-Hydrodynamic Waves" published in the journal Arkiv för matematik, astronomi och fysik. He wrote:
In view of the infinite conductivity, every motion (perpendicular to the field) of the liquid in relation to the lines of force is forbidden because it would give infinite eddy currents. Thus the matter of the liquid is "fastened" to the lines of force...
"On the Existence of Electromagnetic-Hydrodynamic Waves" interpreted the results of Alfvén's earlier paper "Existence of Electromagnetic-Hydrodynamic Waves" published in the journal Nature in 1942.
Later in life, Alfvén advised against the use of his own theorem.
Informally, Alfvén's theorem refers to the fundamental result in ideal magnetohydrodynamic theory that electrically conducting fluids and the magnetic fields within are constrained to move together in the limit of large magnetic Reynolds numbers (Rm)—such as when the fluid is a perfect conductor or when velocity and length scales are infinitely large. Motions of the two are constrained in that all bulk fluid motions perpendicular to the magnetic field result in matching perpendicular motion of the field at the same velocity and vice versa.
Formally, the connection between the movement of the fluid and the movement of the magnetic field is detailed in two primary results often referred to as magnetic flux conservation and magnetic field line conservation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
droite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
La magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
We present a validation of a three-dimensional, two-fluid simulation of plasma turbulence in the TJ-K stellarator, a low temperature plasma experiment ideally suited for turbulence measurements. The simulation is carried out by the GBS code, recently adapt ...
IOP Publishing Ltd2023
, ,
Flux-tube (local) gyrokinetic codes are widely used to simulate drift-wave turbulence in magnetic confinement devices. While a large number of studies show that flux-tube codes provide an excellent approximation for turbulent transport in medium-large devi ...
IOP Publishing Ltd2023
, , ,
The work describes the pedestal structure, transport and stability in an effective mass (Aeff) scan from pure deuterium to pure tritium plasmas using a type I ELMy H-mode dataset in which key parameters that affect the pedestal behaviour (normalized pressu ...