Résumé
In magnetohydrodynamics, the induction equation is a partial differential equation that relates the magnetic field and velocity of an electrically conductive fluid such as a plasma. It can be derived from Maxwell's equations and Ohm's law, and plays a major role in plasma physics and astrophysics, especially in dynamo theory. Maxwell's equations describing the Faraday's and Ampere's laws read: and where: is the electric field. is the magnetic field. is the electric current density. The displacement current can be neglected in a plasma as it is negligible compared to the current carried by the free charges. The only exception to this is for exceptionally high frequency phenomena: for example, for a plasma with a typical electrical conductivity of , the displacement current is smaller than the free current by a factor of for frequencies below . The electric field can be related to the current density using the Ohm's law: where is the velocity field. is the electric conductivity of the fluid. Combining these three equations, eliminating and , yields the induction equation for an electrically resistive fluid: Here is the magnetic diffusivity (in the literature, the electrical resistivity, defined as , is often identified with the magnetic diffusivity). If the fluid moves with a typical speed and a typical length scale , then The ratio of these quantities, which is a dimensionless parameter, is called the magnetic Reynolds number: For a fluid with infinite electric conductivity, , the first term in the induction equation vanishes. This is equivalent to a very large magnetic Reynolds number. For example, it can be of order in a typical star. In this case, the fluid can be called a perfect or ideal fluid. So, the induction equation for an ideal conductive fluid such as most astrophysical plasmas is This is taken to be a good approximation in dynamo theory, used to explain the magnetic field evolution in the astrophysical environments such as stars, galaxies and accretion discs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
PHYS-753: Dynamics of astrophysical fluids and plasmas
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Séances de cours associées (17)
Magnétohydrodynamique : modélisation et équations
Couvre la magnétohydrodynamique, se concentrant sur les défis de modélisation et les équations MHD en physique du plasma.
Électrostatique : Cage de Faraday et charges de surface
Explore la charge par induction, la cage de Faraday et les forces de charge de surface.
MHD Stabilité et équilibre
Explore l'équilibre et la stabilité du MHD, en mettant l'accent sur les considérations énergétiques pour déterminer la stabilité.
Afficher plus
Publications associées (33)

Shedding light on the MRI-driven dynamo in a stratified shearing box

Abhijit Bhausaheb Bendre

We study the magneto-rotational instability (MRI) dynamo in a geometrically thin disc (H/R < 1) using stratified zero net (vertical) flux shearing box simulations. We find that mean fields and electromotive forces (EMFs) oscillate with a primary frequency ...
2024

Occam's razor on the mechanism of resistive-wall-mode-induced beta limits in diverted tokamaks

Jonathan Graves, Daniele Brunetti

External kink modes, believed to be the drive of the 0-limiting resistive wall mode, are strongly stabilized by the presence of a separatrix. We thus propose a novel mechanism explaining the appearance of long-wavelength global instabilities in free bounda ...
2023

Effect of the isotope mass on pedestal structure, transport and stability in D, D/T and T plasmas at similar β N and gas rate in JET-ILW type I ELMy H-modes

Benoît Labit, Haomin Sun, Nicola Vianello, Adriano Stagni

The work describes the pedestal structure, transport and stability in an effective mass (Aeff) scan from pure deuterium to pure tritium plasmas using a type I ELMy H-mode dataset in which key parameters that affect the pedestal behaviour (normalized pressu ...
2023
Afficher plus
Unités associées (1)
Concepts associés (1)
Reconnexion magnétique
droite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
MOOCs associés (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus