Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-sca ...
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurop ...
Neurotechnology is the application of scientific knowledge to the practical purpose of understanding, interacting and/or repairing the brain or, in a broader sense, the nervous system. The development of novel approaches to decode functional information fr ...
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Nevertheless, commercially available MEAs provide a limited number of recording sites and do not allow a precise identification of the spatio-temporal ...
The characterization and recognition of electrical signatures of brain activity constitutes a real challenge. Applications such as Brain-Computer Interfaces (BCI) are based on the accurate identification of mental processes in order to control external dev ...
After continuously applying spatially and temporally congruent visuo-tactile stimulation to external, body-like objects, healthy humans feel the fake part to be the origin of the touch sensations and feel it to be their own. Incongruent stimulation nullifi ...
The characterization and recognition of electrical signatures of brain activity constitutes a real challenge. Applications such as Brain-Computer Interfaces (BCI) are based on the accurate identification of mental processes in order to control external dev ...
Praxic functions are frequently altered following brain lesion, giving rise to apraxia - a complex pattern of impairments that is difficult to assess or interpret. In this chapter, we review the current taxonomies of apraxia and related cognitive and neuro ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Nevertheless, commercially available MEAs provide a limited number of recording sites and do not allow a precise identification of the spatio-temporal ...