Concept

State (functional analysis)

In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both . Density matrices in turn generalize state vectors, which only represent pure states. For M an operator system in a C*-algebra A with identity, the set of all states of M, sometimes denoted by S(M), is convex, weak-* closed in the Banach dual space M*. Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M . In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected measurement outcome (real number). States can be viewed as noncommutative generalizations of probability measures. By Gelfand representation, every commutative C*-algebra A is of the form C0(X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a vector state. A bounded linear functional on a C*-algebra A is said to be self-adjoint if it is real-valued on the self-adjoint elements of A. Self-adjoint functionals are noncommutative analogues of signed measures. The Jordan decomposition in measure theory says that every signed measure can be expressed as the difference of two positive measures supported on disjoint sets. This can be extended to the noncommutative setting. It follows from the above decomposition that A* is the linear span of states. By the Krein-Milman theorem, the state space of M has extreme points. The extreme points of the state space are termed pure states and other states are known as mixed states. For a Hilbert space H and a vector x in H, the equation ωx(A) := ⟨Ax,x⟩ (for A in B(H) ), defines a positive linear functional on B(H).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.