In post-quantum cryptography, ring learning with errors (RLWE) is a computational problem which serves as the foundation of new cryptographic algorithms, such as NewHope, designed to protect against cryptanalysis by quantum computers and also to provide the basis for homomorphic encryption. Public-key cryptography relies on construction of mathematical problems that are believed to be hard to solve if no further information is available, but are easy to solve if some information used in the problem construction is known. Some problems of this sort that are currently used in cryptography are at risk of attack if sufficiently large quantum computers can ever be built, so resistant problems are sought. Homomorphic encryption is a form of encryption that allows computation on ciphertext, such as arithmetic on numeric values stored in an encrypted database.
RLWE is more properly called learning with errors over rings and is simply the larger learning with errors (LWE) problem specialized to polynomial rings over finite fields. Because of the presumed difficulty of solving the RLWE problem even on a quantum computer, RLWE based cryptography may form the fundamental base for public-key cryptography in the future just as the integer factorization and discrete logarithm problem have served as the base for public key cryptography since the early 1980s. An important feature of basing cryptography on the ring learning with errors problem is the fact that the solution to the RLWE problem can be used to solve a version of the shortest vector problem (SVP) in a lattice (a polynomial-time reduction from this SVP problem to the RLWE problem has been presented).
The security of modern cryptography, in particular public-key cryptography, is based on the assumed intractability of solving certain computational problems if the size of the problem is large enough and the instance of the problem to be solved is chosen randomly. The classic example that has been used since the 1970s is the integer factorization problem.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
Statistical learning theory for supervised learning and generalization in PAC and online models (VC theory, MDL/SRM, covering numbers, Radamacher Averages, boosting, compression, stability and connect
La cryptographie post-quantique est une branche de la cryptographie visant à garantir la sécurité de l'information face à un attaquant disposant d'un calculateur quantique. Cette discipline est distincte de la cryptographie quantique, qui vise à construire des algorithmes cryptographiques utilisant des propriétés physiques, plutôt que mathématiques, pour garantir la sécurité. En l'effet, les algorithmes quantiques de Shor, de Grover et de Simon étendent les capacités par rapport à un attaquant ne disposant que d'un ordinateur classique.
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers.
Couvre le développement historique et les concepts clés du cryptage homomorphe, en se concentrant sur le cryptosystème Paillier et le cryptosystème BGV.
Introduit le cryptage homomorphe, permettant le calcul sur des données cryptées sans décryptage, couvrant la sécurité, les applications et les aspects pratiques.
In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can ...
Multiparty homomorphic encryption (MHE) enables a group of parties to encrypt data in a way that (i) enables the evaluation of functions directly over its ciphertexts and (ii) enforces a joint cryptographic access-control over the underlying data.By extend ...
An oblivious linear function evaluation protocol, or OLE, is a two-party protocol for the function f (x) = ax + b, where a sender inputs the field elements a, b, and a receiver inputs x and learns f (x). OLE can be used to build secret-shared multiplicatio ...