Concept

Wadge hierarchy

Concepts associés (5)
Détermination (théorie des ensembles)
La détermination est un sous-champ de la théorie des ensembles, une branche des mathématiques, qui s'intéresse aux conditions dans lesquelles un joueur peut avoir ou non une stratégie gagnante dans un jeu, à la complexité d'une telle stratégie quand elle existe, ainsi qu'aux conséquences de l'existence de telles stratégies. Les jeux étudiés en théorie des ensembles sont généralement des jeux de Gale-Stewart, c'est-à-dire des jeux à deux joueurs à où les joueurs font une suite infinie de coups et où aucun match nul n'est possible.
Pointclass
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.
Axiome de détermination
L'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
Théorie descriptive des ensembles
La théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Hiérarchie arithmétique
thumb|Illustration de la hiérarchie arithmétique. En logique mathématique, plus particulièrement en théorie de la calculabilité, la hiérarchie arithmétique, définie par Stephen Cole Kleene, est une hiérarchie des sous-ensembles de l'ensemble N des entiers naturels définissables dans le langage du premier ordre de l'arithmétique de Peano. Un ensemble d'entiers est classé suivant les alternances de quantificateurs d'une formule sous forme prénexe qui permet de le définir.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.