Détermination (théorie des ensembles)La détermination est un sous-champ de la théorie des ensembles, une branche des mathématiques, qui s'intéresse aux conditions dans lesquelles un joueur peut avoir ou non une stratégie gagnante dans un jeu, à la complexité d'une telle stratégie quand elle existe, ainsi qu'aux conséquences de l'existence de telles stratégies. Les jeux étudiés en théorie des ensembles sont généralement des jeux de Gale-Stewart, c'est-à-dire des jeux à deux joueurs à où les joueurs font une suite infinie de coups et où aucun match nul n'est possible.
Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
Théorie descriptive des ensemblesLa théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.