Concept

Vanish at infinity

In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it. This definition can be formalized in many cases by adding an (actual) point at infinity. A function on a normed vector space is said to if the function approaches as the input grows without bounds (that is, as ). Or, in the specific case of functions on the real line. For example, the function defined on the real line vanishes at infinity. Alternatively, a function on a locally compact space , if given any positive number ε, there exists a compact subset such that whenever the point lies outside of In other words, for each positive number ε the set has compact closure. For a given locally compact space the set of such functions valued in which is either or forms a -vector space with respect to pointwise scalar multiplication and addition, which is often denoted As an example, the function where and are reals greater or equal 1 and correspond to the point on vanishes at infinity. A normed space is locally compact if and only if it is finite-dimensional so in this particular case, there are two different definitions of a function "vanishing at infinity". The two definitions could be inconsistent with each other: if in an infinite dimensional Banach space, then vanishes at infinity by the definition, but not by the compact set definition. Schwartz space Refining the concept, one can look more closely to the of functions at infinity. One of the basic intuitions of mathematical analysis is that the Fourier transform interchanges smoothness conditions with rate conditions on vanishing at infinity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Séances de cours associées (5)
Transforme les propriétés
Couvre les propriétés des transformations et leurs applications en mathématiques.
Formule d'inversion de Fourier
Couvre la formule d'inversion de Fourier, explorant ses concepts mathématiques et ses applications, soulignant l'importance de comprendre le signe.
Afficher plus
Publications associées (2)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.