Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de l'importance de la collecte de données et de la préparation à la classification, y compris les défis d'étiquetage et les méthodes de crowdsourcing.
Explore le transfert de style, la traduction d'images, l'apprentissage auto-supervisé, la prédiction vidéo et la génération de description d'images à l'aide de techniques d'apprentissage en profondeur.
Plongez dans l'importance des fonctionnalités, de l'évolution des modèles, des défis d'étiquetage et de la sélection des modèles dans l'apprentissage automatique.
Introduit l'analyse de corrélation canonique pour trouver des caractéristiques communes dans des ensembles de données séparés, s'étendant aux données multimodales et aux caractéristiques non linéaires.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore les méthodes de classification des documents, y compris k-Nearest-Neighbors, Naïve Bayes Classifier, les modèles de transformateurs, et l'attention multi-têtes.
Plonge dans la dimensionnalité de l'apprentissage profond, la représentation des données et la performance dans la classification des données à grande dimension, explorant la malédiction de la dimensionnalité et le noyau tangent neuronal.