Séance de cours

Deep Learning : dimensionnalité et représentation des données

Description

Cette séance de cours explore le paysage, la performance et la malédiction de la dimensionnalité dans l'apprentissage profond, en se concentrant sur la classification des données dans de grandes dimensions, les avantages de l'apprentissage de la représentation des données et la stabilité vers des déformations lisses. Il explore les mécanismes derrière l'invariance des filets profonds vers les déformations, la géométrie des paysages de perte et le diagramme de phase pour l'apprentissage en profondeur. En outre, il discute de la transition «brouillage» dans l'apprentissage en profondeur, deux algorithmes de limitation basés sur le nombre de paramètres, et le noyau de tangente neurale dans les architectures modernes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.