Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discuter de la façon dont l'apprentissage de caractéristiques éparses peut conduire à une suradaptation dans les réseaux neuraux malgré des preuves empiriques de généralisation.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Explore l'analyse des composants principaux pour la réduction de la dimensionnalité dans l'apprentissage automatique, en présentant ses capacités d'extraction de fonctionnalités et de prétraitement de données.
Explore les applications d'apprentissage automatique dans la modélisation des matériaux, couvrant la régression, la classification et la sélection des fonctionnalités.
Les couvertures comportent des méthodes d'extraction, de regroupement et de classification pour les ensembles de données de grande dimension et l'analyse comportementale utilisant PCA, t-SNE, k-means, GMM et divers algorithmes de classification.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.
Introduit le classificateur Naive Bayes, qui couvre les hypothèses d'indépendance, les probabilités conditionnelles et les applications dans la classification des documents et le diagnostic médical.
Présente la régularisation Lasso et son application à l'ensemble de données MNIST, en mettant l'accent sur la sélection des fonctionnalités et les exercices pratiques sur la mise en œuvre de la descente en gradient.