Cardinal régulierEn théorie des ensembles, un cardinal infini est dit régulier s'il est égal à sa cofinalité. Intuitivement, un cardinal est régulier si toute réunion indexée par un ensemble petit d'ensembles petits est petite, où un ensemble est dit petit s'il est de cardinalité strictement inférieure à . Une autre définition possible équivalente est que est régulier si pour tout cardinal , toute fonction est bornée. Un cardinal qui n'est pas régulier est dit singulier.
Beth (nombre)Dans la théorie des ensembles ZFC (avec axiome du choix), les nombres beth désignent une hiérarchie de nombres cardinaux indexée par les ordinaux, obtenue à partir du dénombrable en prenant le cardinal de l'ensemble des parties pour successeur, et la borne supérieure (ou réunion) pour passer à la limite. La notation de ces nombres utilise la deuxième lettre de l'alphabet hébreu, ou ב. En théorie des ensembles, les nombres cardinaux représentent la taille d'un ensemble.
ForcingEn mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF.
CofinalitéConsidérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ; ∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de .
Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.
Nombre cardinalvignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.