TempératureLa température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Configuration entropyIn statistical mechanics, configuration entropy is the portion of a system's entropy that is related to discrete representative positions of its constituent particles. For example, it may refer to the number of ways that atoms or molecules pack together in a mixture, alloy or glass, the number of conformations of a molecule, or the number of spin configurations in a magnet. The name might suggest that it relates to all possible configurations or particle positions of a system, excluding the entropy of their velocity or momentum, but that usage rarely occurs.
Principes de la thermodynamiquevignette|Entropie d'un corps à 0 K (à gauche) Corps avec une température supérieur à 0 K (à droite) Les principes de la thermodynamique sont les principales lois (principes en fait, car non démontrés) qui régissent la thermodynamique : premier principe de la thermodynamique : principe de conservation de l'énergie ; introduction de la fonction énergie interne, U ; deuxième principe de la thermodynamique : principe d'évolution ; création d'entropie, S ; troisième principe de la thermodynamique ou principe de N
Ensemble microcanoniqueEn physique statistique, l'ensemble microcanonique est un ensemble statistique constitué des répliques fictives d'un système réel pouvant être considéré comme isolé, par suite dont l'énergie (E), le volume (V) et le nombre de particules (N) sont fixés. Cet ensemble statistique a une importance particulière, car c'est à partir de celui-ci que le postulat de la physique statistique est défini. Cet ensemble permet aussi de déterminer les ensembles canonique et grand-canonique, à l'aide d'échanges d'énergie et/ou de particules avec un réservoir.
Fonction de partitionEn physique statistique, la fonction de partition Z est une grandeur fondamentale qui englobe les propriétés statistiques d'un système à l'équilibre thermodynamique. C'est une fonction de la température et d'autres paramètres, tels que le volume contenant un gaz par exemple. La plupart des variables thermodynamiques du système, telles que l'énergie totale, l'entropie, l'énergie libre ou la pression peuvent être exprimées avec cette fonction et ses dérivées.
Énergie du point zéroL'énergie du point zéro est la plus faible énergie possible qu'un système physique quantique puisse avoir ; cela correspond à son énergie quand il est dans son état fondamental, c'est-à-dire lorsque toute autre forme d'énergie a été retirée. Tous les systèmes mécaniques quantiques subissent des fluctuations même quand ils sont à leur état fondamental (auquel est associée une énergie du point zéro), une conséquence de leur nature ondulatoire.
Limite thermodynamiqueEn physique statistique, la limite thermodynamique est la limite mathématique conjointe où : le nombre de particules du système considéré tend vers l'infini ; le volume du système considéré tend vers l'infini ; la densité de particules du système considéré reste constante. Dans le problème thermodynamique de la réunion de systèmes disjoints, on peut aussi voir la limite thermodynamique comme étant le passage d'effets de surface prépondérants à des effets de volume prépondérants.