Résumé
Cloud feedback is the coupling between cloudiness and surface air temperature where a surface air temperature change leads to a change in clouds, which could then amplify or diminish the initial temperature perturbation. Cloud feedbacks can affect the magnitude of internally generated climate variability or they can affect the magnitude of climate change resulting from external radiative forcings. Global warming is expected to change the distribution and type of clouds. Seen from below, clouds emit infrared radiation back to the surface, and so exert a warming effect; seen from above, clouds reflect sunlight and emit infrared radiation to space, and so exert a cooling effect. Cloud representations vary among global climate models, and small changes in cloud cover have a large impact on the climate. Differences in planetary boundary layer cloud modeling schemes can lead to large differences in derived values of climate sensitivity. A model that decreases boundary layer clouds in response to global warming has a climate sensitivity twice that of a model that does not include this feedback. However, satellite data show that cloud optical thickness actually increases with increasing temperature. Whether the net effect is warming or cooling depends on details such as the type and altitude of the cloud; details that are difficult to represent in climate models. In addition to how clouds themselves will respond to increased temperatures, other feedbacks affect clouds properties and formation. The amount and vertical distribution of water vapor is closely linked to the formation of clouds. Ice crystals have been shown to largely influence the amount of water vapor. Water vapor in the subtropical upper troposphere has been linked to the convection of water vapor and ice. Changes in subtropical humidity could provide a negative feedback that decreases the amount of water vapor which in turn would act to mediate global climate transitions. Changes in cloud cover are closely coupled with other feedback, including the water vapor feedback and ice–albedo feedback.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.