Résumé
Cloud feedback is the coupling between cloudiness and surface air temperature where a surface air temperature change leads to a change in clouds, which could then amplify or diminish the initial temperature perturbation. Cloud feedbacks can affect the magnitude of internally generated climate variability or they can affect the magnitude of climate change resulting from external radiative forcings. Global warming is expected to change the distribution and type of clouds. Seen from below, clouds emit infrared radiation back to the surface, and so exert a warming effect; seen from above, clouds reflect sunlight and emit infrared radiation to space, and so exert a cooling effect. Cloud representations vary among global climate models, and small changes in cloud cover have a large impact on the climate. Differences in planetary boundary layer cloud modeling schemes can lead to large differences in derived values of climate sensitivity. A model that decreases boundary layer clouds in response to global warming has a climate sensitivity twice that of a model that does not include this feedback. However, satellite data show that cloud optical thickness actually increases with increasing temperature. Whether the net effect is warming or cooling depends on details such as the type and altitude of the cloud; details that are difficult to represent in climate models. In addition to how clouds themselves will respond to increased temperatures, other feedbacks affect clouds properties and formation. The amount and vertical distribution of water vapor is closely linked to the formation of clouds. Ice crystals have been shown to largely influence the amount of water vapor. Water vapor in the subtropical upper troposphere has been linked to the convection of water vapor and ice. Changes in subtropical humidity could provide a negative feedback that decreases the amount of water vapor which in turn would act to mediate global climate transitions. Changes in cloud cover are closely coupled with other feedback, including the water vapor feedback and ice–albedo feedback.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Séances de cours associées (21)
Facteurs de sensibilité au climat et de rétroaction
Explore la sensibilité au climat, les facteurs de rétroaction et l'estimation du SCE en utilisant des contraintes émergentes et des enregistrements paléoclimatiques.
Force radiative et sensibilité au climat
Explore le forçage radiatif, la sensibilité climatique et les mécanismes de rétroaction dans le changement climatique, en mettant l'accent sur le rôle de divers composants comme le CO2 et le méthane.
Paramètreisation des processus atmosphériques
Explore la paramétrisation des processus atmosphériques, y compris la microphysique, la turbulence, le rayonnement, la convection et les processus de surface, afin d'améliorer la précision des prévisions et de quantifier les incertitudes.
Afficher plus
Publications associées (119)

Characteristics and sources of fluorescent aerosols in the central Arctic Ocean

Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Jakob Boyd Pernov, Nora Bergner, Oliver Müller, Alireza Moallemi, Hélène Paule Angot, Markus Frey, Margarida Teles Nogueira Rolo

The Arctic is sensitive to cloud radiative forcing. Due to the limited number of aerosols present throughout much of the year, cloud formation is susceptible to the presence of cloud condensation nuclei and ice nucleating particles (INPs). Primary biologic ...
2024

New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale

Athanasios Nenes, Spyros Pandis

New particle formation (NPF) substantially contributes to global cloud condensation nuclei (CCN), and their climate impacts. Individual NPF events are also thought to increase local CCN, cloud droplet number (CDN), and cloud albedo. High resolution simulat ...
Washington2024

Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments

Julia Schmale, Andrea Baccarini, Roman Pohorsky

The Modular Multiplatform Compatible Air Measurement System (MoMuCAMS) is a newly developed in situ aerosol and trace gas measurement platform for lower-atmospheric vertical profiling. MoMuCAMS has been primarily designed to be attached to a Helikite, a ru ...
2024
Afficher plus
Concepts associés (1)
Nuage
Un nuage est en météorologie une masse visible constituée initialement d'une grande quantité de gouttelettes d’eau (parfois de cristaux de glace associés à des aérosols chimiques ou des minéraux) en suspension dans l’atmosphère au-dessus de la surface d'une planète. L’aspect d'un nuage dépend de sa nature, de sa dimension, de la lumière qu’il reçoit, ainsi que du nombre et de la répartition des particules qui le constituent. Les gouttelettes d’eau d’un nuage proviennent de la condensation de la vapeur d'eau contenue dans l’air.