We prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic p>0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with La ...
The Chow-Mumford (CM) line bundle is a functorial line bundle on the base of any family of klt Fano varieties. It is conjectured that it yields a polarization on the moduli space of K-poly-stable klt Fano varieties. Proving ampleness of the CM line bundle ...
Given a topological modular functor V in the sense of Walker, we construct vector bundles Z (lambda) over bar, over (M) over bar (g,n) whose Chern characters define semi-simple cohomological field theories. This construction depends on a determinati ...
Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constructed a strict model of its loop space (Omega) over tild ...
We introduce a notion of xi-stability on the affine grassmannian (SIC) for the classical groups, this is the local version of the xi-stability on the moduli space of Higgs bundles on a curve introduced by Chaudouard and Laumon. We prove that the quotient ( ...
We prove that the category of systems of sesquilinear forms over a given hermitian category is equivalent to the category of unimodular 1-hermitian forms over another hermitian category. The sesquilinear forms are not required to be unimodular or defined o ...
The effect of poly(amido amine) (PAMAM) dendrimers of generations G2, G6, and G10 on the dispersion stability of titanate nanowires (TiONWs) as potential nanocarriers was clarified in order to develop biocompatible delivery systems. The PAMAMs adsorbed str ...
In this work, we define a deformation theory for the coupled Kahler-Yang-Mills equations, generalizing work of Sz,kelyhidi on constant scalar curvature Kahler metrics. We use the theory to find new solutions of the equations via deformation of the complex ...
We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter alpha, where X is a smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of alpha, we prove that the l ...
Let eta be a Real bundle, in the sense of Atiyah, over a space X. This is a complex vector bundle together with an involution which is compatible with complex conjugation. We use the fact that BU has a canonical structure of a conjugation space, as defined ...