Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Hund's rule of maximum multiplicity is a rule based on observation of atomic spectra, which is used to predict the ground state of an atom or molecule with one or more open electronic shells. The rule states that for a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity. This implies that if two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs. The rule, discovered by Friedrich Hund in 1925, is of important use in atomic chemistry, spectroscopy, and quantum chemistry, and is often abbreviated to Hund's rule, ignoring Hund's other two rules. The multiplicity of a state is defined as 2S + 1, where S is the total electronic spin. A high multiplicity state is therefore the same as a high-spin state. The lowest-energy state with maximum multiplicity usually has unpaired electrons all with parallel spin. Since the spin of each electron is 1/2, the total spin is one-half the number of unpaired electrons, and the multiplicity is the number of unpaired electrons + 1. For example, the nitrogen atom ground state has three unpaired electrons of parallel spin, so that the total spin is 3/2 and the multiplicity is 4. The lower energy and increased stability of the atom arise because the high-spin state has unpaired electrons of parallel spin, which must reside in different spatial orbitals according to the Pauli exclusion principle. An early but incorrect explanation of the lower energy of high multiplicity states was that the different occupied spatial orbitals create a larger average distance between electrons, reducing electron-electron repulsion energy. However, quantum-mechanical calculations with accurate wave functions since the 1970s have shown that the actual physical reason for the increased stability is a decrease in the screening of electron-nuclear attractions, so that the unpaired electrons can approach the nucleus more closely and the electron-nuclear attraction is increased.
Edoardo Charbon, Claudio Bruschini, Ivan Michel Antolovic, Samuel Burri, Arin Can Ülkü
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Jian Zhao, Thomas Berger, Federica Legger, Bandeep Singh, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer