Le modèle de Bohr est une théorie obsolète dans le domaine de la physique/chimie, cherchant à comprendre la constitution d'un atome, et plus particulièrement celui de l'hydrogène et des ions hydrogénoïdes (ions ne possédant qu'un seul électron). Élaborée par Niels Bohr en 1913, cette théorie établie sur le modèle planétaire de Rutherford rencontra un succès immédiat car elle expliquait de manière simple les raies spectrales des éléments hydrogénés tout en effectuant un rapprochement entre les premiers modèles de l'atome et la théorie des quanta. Ce modèle sera généralisé au cas des électrons relativistes par Arnold Sommerfeld afin d'écrire de façon quantitative la structure fine des lignes spectrales de l'hydrogène. Cependant, cette théorie ne peut expliquer le spectre d'éléments à plusieurs électrons (comme celui de l'hélium), ni la nature des liaisons chimiques, et elle est totalement abandonnée au profit de la mécanique quantique à partir de 1925.
Durant les , la spectroscopie se développe, et on mesure des spectres de différentes sources lumineuses comme le soleil ou la lampe à hydrogène. Depuis Thomas Melvill (1726-1753) en 1750, on comprend que les spectres des éléments chimiques sont discrets et formés de raies spectrales. La spectroscopie théorique naît avec la loi du rayonnement de Gustav Kirchhoff (1824-1887), publiée en 1859, qui explique l'équivalence entre le spectre d'émission et le spectre d'absorption des substances chimiques. En collaboration avec Robert Bunsen (1811-1899), ils expliquent les raies de Fraunhofer du soleil comme étant la signature de trente éléments chimiques présents dans les couches supérieures du soleil. Ainsi chaque élément chimique possède un spectre unique et caractéristique. Toutefois, pour chaque élément, le nombre et la position des raies restaient inexpliqués. Le plus simple d'entre eux, le spectre de l'hydrogène, fut alors intensivement étudié et on trouva bientôt des « séries » de raies comme celles de Lyman, Balmer, Paschen, du nom de leur découvreurs.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
L'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets.
La mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
L'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
We carry out a weakly nonlinear analysis of the centrifugal instability for a columnar vortex in a rotating fluid, and compare the results to those of the semi-linear model derived empirically by Yim et al. (J. Fluid Mech., vol. 897, 2020, A34). The asympt ...
CAMBRIDGE UNIV PRESS2023
Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...
WILEY-V C H VERLAG GMBH2023
We introduce a class of quantum optical Hamiltonians characterized by three-body couplings and propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model. Unlike two-body light-matter interactions, this three-bod ...