Résumé
L'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique. Louis de Broglie proposa de généraliser cette dualité à toutes les particules connues. L'hypothèse de de Broglie eut pour conséquence a priori paradoxale la production d'interférences par les électrons — à l'instar de la lumière — ce qui fut vérifié ultérieurement par l'expérience de Davisson-Germer. Par analogie avec le photon, Louis de Broglie associa ainsi à chaque particule libre d'énergie et de quantité de mouvement une fréquence et une longueur d'onde : Dans les deux expressions ci-dessus, la lettre désigne la constante de Planck. L'équation de Schrödinger, établie par le physicien Erwin Schrödinger en 1925, est une équation d'onde dont l'inconnue est appelée la fonction d'onde, ce qui généralise l'approche de Louis de Broglie ci-dessus aux particules massives non relativistes soumises à une force dérivant d'un potentiel , dont l'énergie mécanique totale est classiquement : Le succès de l'équation, déduite de cette extension par utilisation du principe de correspondance, fut immédiat quant à l'évaluation des niveaux quantifiés d'énergie de l'électron dans l'atome d'hydrogène, car elle permit d'expliquer les raies d'émission de l'hydrogène : séries de Lyman, Balmer, Brackett, Paschen L'interprétation physique communément admise de la fonction d'onde de Schrödinger ne fut donnée qu'en par Max Born.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.