Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Large deformation diffeomorphic metric mappingLarge deformation diffeomorphic metric mapping (LDDMM) is a specific suite of algorithms used for diffeomorphic mapping and manipulating dense imagery based on diffeomorphic metric mapping within the academic discipline of computational anatomy, to be distinguished from its precursor based on diffeomorphic mapping. The distinction between the two is that diffeomorphic metric maps satisfy the property that the length associated to their flow away from the identity induces a metric on the group of diffeomorphisms, which in turn induces a metric on the orbit of shapes and forms within the field of Computational Anatomy.
Voxel-based morphometryVoxel-based morphometry is a computational approach to neuroanatomy that measures differences in local concentrations of brain tissue, through a voxel-wise comparison of multiple brain images. In traditional morphometry, volume of the whole brain or its subparts is measured by drawing regions of interest (ROIs) on images from brain scanning and calculating the volume enclosed. However, this is time consuming and can only provide measures of rather large areas. Smaller differences in volume may be overlooked.
Statistical shape analysisStatistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes.
Analyse procustéenneEn statistiques, l'analyse procustéenne est une technique pour comparer des formes. Elle est utilisée pour déformer un objet afin de le rendre autant que faire se peut semblable à une référence (potentiellement arbitraire), ne laissant apparaître entre l'objet et la référence que les différences que les transformations autorisées (rotation, translation et mise à l'échelle) n'ont pu gommer. La déformation supprime les différences qui ne sont pas dues à la forme intrinsèque de l'objet (mais par exemple à un biais introduit lors de l'acquisition des données).
Neurosciences computationnellesLes neurosciences computationnelles (NSC) sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central du traitement de l'information associé à nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.