MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
MATH-317: Algebra V - Galois theoryGalois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
MATH-670: The theta correspondenceIn the course we will discuss some introductory aspects of the local/global theta correspondence for automorphic forms/representation for various dual pairs. One of the objectives will be to prove Wal
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb